【題目】同程旅游隨機調(diào)查了年齡在(單位:歲)內(nèi)的1250人的購票情況,其中50歲以下(不包含50歲)的有900人,50歲以上(包含50歲)的有350人,由調(diào)查數(shù)據(jù)的統(tǒng)計結(jié)果顯示,有的人參與網(wǎng)上購票,網(wǎng)上購票人數(shù)的頻率分布直方圖如下圖所示.
(1)已知年齡在,,的網(wǎng)上購票人數(shù)成等差數(shù)列,求的值;
(2)根據(jù)題目數(shù)據(jù)填寫列聯(lián)表,并根據(jù)填寫數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.001的前提下,認為網(wǎng)上購票與年齡有關系?
50歲以下 | 50歲以上 | 總計 | |
參與網(wǎng)上購票 | |||
不參與網(wǎng)上購票 | |||
總計 |
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
(3)為鼓勵大家網(wǎng)上購票,該平臺常采用購票就發(fā)放酒店入住代金券的方法進行促銷,具體做法如下:年齡在歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購票者中抽取10人,并在這10人中隨機抽取3人進行回訪調(diào)查,求此3人獲得代金券的金額總和的分布列和數(shù)學期望.
【答案】(1),
(2)在犯錯誤的概率不超過0.001的前提下,能認為網(wǎng)上購票與年齡有關系,列聯(lián)表見解析
(3)分布列見解析,
【解析】
(1)根據(jù)條件列方程,,解方程即可;
(2)根據(jù)頻率分布直方圖得到參與網(wǎng)上購票和不參與網(wǎng)上購票的對應年齡的人數(shù),填入表格的相應位置,根據(jù)列聯(lián)表,及的計算公式,計算出的值,并代入臨界值表中進行比較,可得到答案;
(3)根據(jù)分層抽樣得到年齡在歲的有6人,其余年齡段的有4人,分別計算等于60,90,120,150時的概率得出分布列,根據(jù)分布列得出數(shù)學期望.
(1)依題意,,,
解得,;
(2)
50歲以下 | 50歲以上 | 總計 | |
參與網(wǎng)上購票 | 750 | 250 | 1000 |
不參與網(wǎng)上購票 | 150 | 100 | 250 |
總計 | 900 | 350 | 1250 |
所以在犯錯誤的概率不超過0.001的前提下,能認為網(wǎng)上購票與年齡有關系;
(3)利用分層抽樣的方式從1000位網(wǎng)上購票者中抽取10人,其中年齡在歲的有6人,其余年齡段的有4人,
從中隨機抽取3人,則這3人獲得代金券的金額總和的所有可能取值為60,90,120,150,
且,,,
,
故分布列為
60 | 90 | 120 | 150 | |
數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知曲線C1:, 曲線C2:,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系. 并在兩種坐標系中取相同的單位長度。
(1)寫出曲線C1,C2的極坐標方程;
(2)在極坐標系中,已知點A是射線l:與C1的交點,點B是l與C2的異于極點的交點,當在區(qū)間上變化時,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為為其左、右頂點,為橢圓上除外任意一點,若記直線的斜率分別為
(1)求證:為定值;
(2)若橢圓的長軸長為,過點作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點,設為與橢圓相交的弦的中點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調(diào)整,調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額,依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:
個人所得稅稅率表(調(diào)整前) | 個人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應納稅所得額 | 稅率(%) | 級數(shù) | 全月應納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
… | … | … | … | … | … |
某稅務部門在某公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
(1)若某員工2月的工資、薪金等稅前收入為7500元時,請計算一下調(diào)整后該員工的實際收入比調(diào)整前增加了多少?
(2)現(xiàn)從收入在及的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),設隨機變量,求的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓的左、右焦點,離心率為,是平面內(nèi)兩點,滿足,線段的中點在橢圓上,周長為12.
(1)求橢圓的方程;
(2)若與圓相切的直線與橢圓交于,求(其中為坐標原點)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的左、右頂點分別為A,B,左焦點為F,O為原點,點P為橢圓C上不同于A、B的任一點,若直線PA與PB的斜率之積為,且橢圓C經(jīng)過點.
(1)求橢圓C的方程;
(2)若P點不在坐標軸上,直線PA,PB交y軸于M,N兩點,若直線OT與過點M,N的圓G相切.切點為T,問切線長是否為定值,若是,求出定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖a是某市參加2012年高考的學生身高條形統(tǒng)計圖,從左到右的各條形表示的學生人數(shù)依次記為、、…、[如表示身高(單位:cm)在內(nèi)的學生人數(shù)].圖b是統(tǒng)計圖a中身高在一定范圍內(nèi)學生人數(shù)的一個算法流程圖.現(xiàn)要統(tǒng)計身高在(含160cm,不含180cm)的學生人數(shù),那么在流程圖中的判斷框內(nèi)應填寫的條件是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com