【題目】已知函數(shù)fx)=cos2x+2sinsinx).

)求fx)的單調(diào)遞增區(qū)間;

)求函數(shù)yfx)的對稱軸方程,并求函數(shù)fx)在區(qū)間[,]上的最大值和最小值.

【答案】[],kZ; )最小值為﹣1,最大值為

【解析】

fx)=cos2x+2sinsinx

cos2xcossin2xsin2cosxsinx

cos2xsin2x+sin2xcos2xsin2x+cos2x

cos2xsin2xcos2x),

2π≤2x2,kZxkZ,

即函數(shù)的單調(diào)遞增區(qū)間為[,],kZ

)由2xx,即函數(shù)的對稱軸方程為x,kZ

時,2xπ,2x

所以當2xπ,即時,函數(shù)fx)取得最小值,最小值為fx)=cosπ=﹣1,

2x,時,函數(shù)fx)取得最大值,最大值為fx)=cos

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).下列命題為真命題的是(

A.函數(shù)是周期函數(shù)B.函數(shù)既有最大值又有最小值

C.函數(shù)的定義域是,且其圖象有對稱軸D.對于任意單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某機械廠要將長,寬的長方形鐵皮進行裁剪.已知點的中點,點在邊上,裁剪時先將四邊形沿直線翻折到處(點,分別落在直線下方點,處,交邊于點,再沿直線裁剪.

1)當時,試判斷四邊形的形狀,并求其面積;

2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近一段時間來,由于受非洲豬瘟的影響,各地豬肉價格普遍上漲,生豬供不應求。各大養(yǎng)豬場正面臨巨大挑戰(zhàn),目前各項針對性政策措施對于生豬整體產(chǎn)能恢復、激發(fā)養(yǎng)殖戶積極性的作用正在逐步顯現(xiàn).

現(xiàn)有甲、乙兩個規(guī)模一致的大型養(yǎng)豬場,均養(yǎng)有1萬頭豬.根據(jù)豬的重量,將其分為三個成長階段如下表.

豬生長的三個階段

階段

幼年期

成長期

成年期

重量(Kg

根據(jù)以往經(jīng)驗,兩個養(yǎng)豬場內(nèi)豬的體重均近似服從正態(tài)分布.

由于我國有關(guān)部門加強對大型養(yǎng)豬場即將投放市場的成年期的豬監(jiān)控力度,高度重視其質(zhì)量保證,為了養(yǎng)出健康的成年活豬,甲、乙兩養(yǎng)豬場引入兩種不同的防控及養(yǎng)殖模式.已知甲、乙兩個養(yǎng)豬場內(nèi)一頭成年期豬能通過質(zhì)檢合格的概率分別為,

(1)試估算各養(yǎng)豬場三個階段的豬的數(shù)量;

(2)已知甲養(yǎng)豬場出售一頭成年期的豬,若為健康合格的豬 ,則可盈利元,若為不合格的豬,則虧損元;乙養(yǎng)豬場出售一頭成年期的豬,若為健康合格的豬 ,則可盈利元,若為不合格的豬,則虧損元.記為甲、乙養(yǎng)豬場各出售一頭成年期豬所得的總利潤,求隨機變量的分布列,假設(shè)兩養(yǎng)豬場均能把成年期豬售完,求兩養(yǎng)豬場的總利潤期望值.

(參考數(shù)據(jù):若,則,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓與定圓外切,且與軸相切.

1)求動圓圓心的軌跡的方程;

2)過作直線軸右側(cè)的部分相交于,兩點,點關(guān)于軸的對稱點為.

(ⅰ)求直線軸的交點的坐標;

(ⅱ)若,求的內(nèi)切圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】更相減損術(shù)是《九章算術(shù)》中介紹的一種用于求兩個正整數(shù)的最大公約數(shù)的方法,該方法的算法流程如圖所示,根據(jù)程序框圖計算,當a35b28時,該程序框圖運行的結(jié)果是(  。

A.a6,b7B.a7,b7C.a7,b6D.a8,b8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A0,1),B0,﹣1),M(﹣10),動點P為曲線C上任意一點,直線PAPB的斜率之積為,動直線l與曲線C相交于不同兩點Qx1y1),Rx2y2),其中y10,y20且滿足

1)求曲線C的方程;

2)若直線lx軸相交于一點N,求N點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若,當時,解關(guān)于的不等式;

2)證明:有且僅有2個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線,動圓P與圓M相外切,且與直線l相切.設(shè)動圓圓心P的軌跡為E.

1)求E的方程;

2)若點ABE上的兩個動點,O為坐標原點,且,求證:直線AB恒過定點.

查看答案和解析>>

同步練習冊答案