【題目】已知函數(shù),.

1)若,當(dāng)時(shí),解關(guān)于的不等式

2)證明:有且僅有2個(gè)零點(diǎn).

【答案】(1);(2)見解析

【解析】

1)先由導(dǎo)數(shù)的知識(shí)判斷出上單調(diào)遞增,再由不等式,解之即可;(2)由(1)可知函數(shù)上沒有零點(diǎn),

當(dāng)時(shí),令,則,易知,則上單調(diào)遞增,再根據(jù)、得出,使得,得上單調(diào)遞減,在上單調(diào)遞增,

然后由、、并結(jié)合函數(shù)的零點(diǎn)存在性定理可得,上分別有一個(gè)零點(diǎn).

1)當(dāng)時(shí),.

上單調(diào)遞增,∴不等式等價(jià)于解得.

故關(guān)于的不等式的解集為.

2)證明:由(1)知函數(shù)上單調(diào)遞增,且.

∴函數(shù)上沒有零點(diǎn).

設(shè),

當(dāng)時(shí),,∴.上單調(diào)遞增.

易知上單調(diào)遞增,且.

,使得,所以上單調(diào)遞減,在上單調(diào)遞增.

又因?yàn)?/span>,,.

所以,上分別有一個(gè)零點(diǎn).

綜上所述:有且僅有2個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,底面ABCD為矩形,平面PAB⊥平面ABCD,ABAP=3,ADPB=2,E為線段AB上一點(diǎn),且AEEB=7︰2,點(diǎn)F、G分別為線段PA、PD的中點(diǎn).

(1)求證:PE⊥平面ABCD;

(2)若平面EFG將四棱錐PABCD分成左右兩部分,求這兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=cos2x+2sinsinx).

)求fx)的單調(diào)遞增區(qū)間;

)求函數(shù)yfx)的對(duì)稱軸方程,并求函數(shù)fx)在區(qū)間[,]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,ADCDADBC,PA=AD=CD=2BC=3EPD的中點(diǎn),點(diǎn)FPC上,且

(Ⅰ)求證:CD⊥平面PAD;

(Ⅱ)求二面角F–AE–P的余弦值;

(Ⅲ)設(shè)點(diǎn)GPB上,且.判斷直線AG是否在平面AEF內(nèi),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),的導(dǎo)函數(shù).

(Ⅰ)當(dāng)時(shí),求證

(Ⅱ)是否存在正整數(shù),使得對(duì)一切恒成立?若存在,求出的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問100名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下列聯(lián)表:

1)能否有的把握認(rèn)為是否愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)?請(qǐng)說明理由.

2)利用分層抽樣的方法從以上愛好該項(xiàng)運(yùn)動(dòng)的大學(xué)生中抽取6人組建運(yùn)動(dòng)達(dá)人社,現(xiàn)從運(yùn)動(dòng)達(dá)人社中選派2人參加某項(xiàng)校際挑戰(zhàn)賽,求選出的2人中恰有1名女大學(xué)生的概率.

總計(jì)

愛好

40

20

60

不愛好

15

25

40

總計(jì)

55

45

100

附:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,F1(﹣2,0),F22,0)是橢圓C的兩個(gè)焦點(diǎn),M是橢圓C上的一點(diǎn),當(dāng)MF1F1F2時(shí),有|MF2|3|MF1|

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過點(diǎn)P03)作直線l與軌跡C交于不同兩點(diǎn)A,B,使△OAB的面積為(其中O為坐標(biāo)原點(diǎn)),問同樣的直線l共有幾條?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),有下列4個(gè)命題:①任取,都有恒成立;②,對(duì)于一切恒成立;③函數(shù)3個(gè)零點(diǎn);④對(duì)任意,不等式恒成立.則其中所有真命題的序號(hào)是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案