【題目】如圖,在四棱錐中,平面,,,,.
(1)求證:平面;
(2)若直線與平面所成的線面角的正弦值為,求長(zhǎng).
【答案】(1)見解析(2)
【解析】
(1)根據(jù)線面垂直性質(zhì)可得,再根據(jù)題中,即可由線面垂直的判定定理證明平面;
(2)先證明為等腰三角形,然后以中點(diǎn)為原點(diǎn),,,為,,軸,建立空間直角坐標(biāo)系,設(shè),寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面的法向量,再根據(jù)直線與平面所成的線面角的正弦值求得的值,即可求得長(zhǎng).
(1)證明:∵平面,平面,
∴,
∵,平面,,
∴平面.
(2)∵,,
∴為等腰直角三角形,
∵,
∴為等腰三角形.
以中點(diǎn)為原點(diǎn),,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:
設(shè),則,,,,
∴.
設(shè)平面的法向量為,
∵,,
∴,令,則,,∴.
∴,解得.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左頂點(diǎn)到直線的距離,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點(diǎn),若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),證明:到直線的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬元,年產(chǎn)量為()件.當(dāng)時(shí),年銷售總收人為()萬元;當(dāng)時(shí),年銷售總收人為萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤(rùn)為萬元.(年利潤(rùn)=年銷售總收入一年總投資)
(1)求(萬元)與(件)的函數(shù)關(guān)系式;
(2)當(dāng)該工廠的年產(chǎn)量為多少件時(shí),所得年利潤(rùn)最大?最大年利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貧困地區(qū)有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶.為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實(shí)施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元).
(Ⅰ)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這150個(gè)樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為,,,,,,.如果將頻率視為概率,估計(jì)該地區(qū)2017年家庭收入超過1.5萬元的概率;
(Ⅲ)樣本數(shù)據(jù)中,由5戶山區(qū)家庭的年收入超過2萬元,請(qǐng)完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①函數(shù)y=cos(x+)是奇函數(shù);
②存在實(shí)數(shù),使得sin+cos=2;
③若、是第一象限角且<,則tan<tan;
④x=是函數(shù)y=sin(2x+)的一條對(duì)稱軸方程;
⑤函數(shù)y=tan(2x+)的圖象關(guān)于點(diǎn)(,0)成中心對(duì)稱圖形.
其中正確命題的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面上,稱橫、縱坐標(biāo)都是有理數(shù)的點(diǎn)為有理點(diǎn).求滿足如下條件的最小正整數(shù):每一個(gè)圓周上含有個(gè)有理點(diǎn)的圓,它的圓周上一定含有無窮多個(gè)有理點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,.
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),若對(duì)任意,有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (是自然對(duì)數(shù)的底數(shù))
(1)求證:
(2)若不等式在上恒成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2-(2m+1)x+m.
(1)若方程f(x)=0有兩個(gè)不等的實(shí)根x1,x2,且-1<x1<0<x2<1,求m的取值范圍;
(2)若對(duì)任意的x∈[1,2],≤2恒成立,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com