【題目】一個(gè)工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬元,年產(chǎn)量為()件.當(dāng)時(shí),年銷售總收人為()萬元;當(dāng)時(shí),年銷售總收人為萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤為萬元.(年利潤=年銷售總收入一年總投資)
(1)求(萬元)與(件)的函數(shù)關(guān)系式;
(2)當(dāng)該工廠的年產(chǎn)量為多少件時(shí),所得年利潤最大?最大年利潤是多少?
【答案】(1)();(2)當(dāng)年產(chǎn)量為件時(shí),所得年利潤最大,最大年利潤為萬元.
【解析】
(1)根據(jù)已知條件,分當(dāng)時(shí)和當(dāng)時(shí)兩種情況,分別求出年利潤的表達(dá)式,綜合可得答案;
(2)根據(jù)(1)中函數(shù)的解析式,求出最大值點(diǎn)和最大值即可.
(1)由題意得:當(dāng)時(shí),,
當(dāng)時(shí),,
故();
(2)當(dāng)時(shí),,
當(dāng)時(shí),,
而當(dāng)時(shí),,
故當(dāng)年產(chǎn)量為件時(shí),所得年利潤最大,最大年利潤為萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實(shí)欒城(今屬河北石家莊市)人,金元時(shí)期的數(shù)學(xué)家、詩人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計(jì)算)( )
A. 10步,50步 B. 20步,60步 C. 30步,70步 D. 40步,80步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為常數(shù))
(1)求的單調(diào)增區(qū)間;
(2)若時(shí),的最大值為,求的值;
(3)求取最大值時(shí)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列四個(gè)命題:
①函數(shù)滿足:對(duì)任意有;
②函數(shù)均為奇函數(shù);
③若函數(shù)在上有意義,則的取值范圍是;
④設(shè)是關(guān)于的方程,(且)的兩根,則;
其中正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,.
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為偶函數(shù).
(1)求實(shí)數(shù)的值,并寫出在區(qū)間上的增減性和值域(不需要證明);
(2)令,其中,若對(duì)任意、,總有,求的取值范圍;
(3)令,若對(duì)任意、,總有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的最小正周期、單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面A1B1C1,AA1=1,底面三角形A1B1C1是邊長為2的正三角形,E是BC中點(diǎn),則下列說法正確的是( )
①CC1與AB1所成角的余弦值為
②AB⊥平面ACC1A1
③三角形AB1E為直角三角形
④A1C1∥平面AB1E
A.①②B.③④C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】5名男生3名女生參加升旗儀式:
(1)站兩橫排,3名女生站前排,5名男生站后排有多少種站法?
(2)站兩縱列,每列4人,每列都有女生且女生站在男生前面,有多少種排列方法?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com