【題目】已知雙曲線的兩條漸近線分別為直線,,經過右焦點且垂直于的直線分別交,于兩點,若,,成等差數列,且,則該雙曲線的離心率為( )
A. B. C. D.
【答案】A
【解析】
由雙曲線的性質可得:|AF|=b,|OA|=a,∴tan∠AOF=,∴tan∠AOB=tan2∠AOF=,在直角三角形OAB中求出|AB|和|OB|,再根據等差中項列等式可得 a=2b,可得離心率.
由雙曲線的性質可得:|AF|=b,|OA|=a,tan∠AOF=,
∴tan∠AOB=tan2∠AOF=
在Rt△OAB中,tan∠AOB=
∴|OB|=,又|OA|,|AB|,|OB|成等差數列,∴2|AB|=|OA|+|OB|,
∴,化簡得:2a2﹣3ab﹣2b2=0,即(2a+b)(a﹣2b)=0,
∴a﹣2b=0,即a=2b,∴a2=4b2=4(c2﹣a2),5a2=4c2,∴e2=.
故選:A.
科目:高中數學 來源: 題型:
【題目】如圖,在直角坐標系中,圓與軸負半軸交于點,過點的直線,分別與圓交于,兩點.
(Ⅰ)若,,求的面積;
(Ⅱ)若直線過點,證明:為定值,并求此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校研究性學習小組發(fā)現,學生上課的注意力指標隨著聽課時間的變化而變化.老師講課開始時學生的興趣激增,接下來學生的興趣將保持較理想的狀態(tài)一段時間,隨后學生的注意力開始分散.該小組發(fā)現注意力指標與上課時刻第分鐘末的關系如下(,設上課開始時,t=0):.若上課后第5分鐘末時的注意力指標為140.
(1)求的值;
(2)上課后第5分鐘末和第35分鐘末比較,哪個時刻注意力更集中?
(3)在一節(jié)課中,學生的注意力指標至少達到140的時間能保持多長?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前項的和為,且,.
(1)證明數列為等比數列,并求出數列的通項公式;
(2)設,求數列的前項的和;
(3)設函數(為常數),且(2)中的>對任意的和都成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點和上的點,滿足, .
(1)當點在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標原點,且時,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,和交于一點,除以外的其余各棱長均為2.
作平面與平面的交線,并寫出作法及理由;
求證:平面平面;
若多面體的體積為2,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com