【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面是正三角形)中,是棱上一點.
(1)若分別是的中點,求證:平面;
(2)若是上靠近點的一個三等分點,求二面角的余弦值.
【答案】(1)見解析;(2).
【解析】
試題分析:(1)連結(jié)交于點,連結(jié),易知是的中點,然后利用中位線定理可使問題得證;(2)以為原點建立空間直角坐標系,然后求出相應點的坐標與向量,由此求得平面與平面的法向量,從而利用空間夾角公式求解.
試題解析:(1)連結(jié)交于點,連結(jié),易知是的中點,
因為分別是的中點,所以,且,
所以四邊形是平行四邊形,所以.
因為平面平面,
所以平面........................ 6分
(2)建立如圖所示的空間直角坐標系,
則點,設平面的一個法向量為.
則由得,
令,得,
易知平面的一個法向量為,設二面角的大小為,則
...................12分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(I)求證:在區(qū)間上單調(diào)遞增;
(II)若,函數(shù)在區(qū)間上的最大值為,求的試題分析式.并判斷是否有最大值和最小值,請說明理由(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三文科名學生參加了月份的模擬考試,學校為了了解高三文科學生的數(shù)學、語文情況,利用隨機數(shù)表法從中抽取名學生的成績進行統(tǒng)計分析,抽出的名學生的數(shù)學、語文成績?nèi)缦卤?
(1)將學生編號為:, 若從第行第列的數(shù)開始右讀,請你依次寫出最先抽出的 個人的編號(下面是摘自隨機用表的第四行至第七行)
(2)若數(shù)學優(yōu)秀率為,求的值;
(3)在語文成績?yōu)榱嫉膶W生中,已知,求數(shù)學成績“優(yōu)”比“良”的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市有一直角梯形綠地,其中,km,km.現(xiàn)過邊界上的點處鋪設一條直的灌溉水管,將綠地分成面積相等的兩部分.
(1)如圖①,若為的中點,在邊界上,求灌溉水管的長度;
(2)如圖②,若在邊界上,求灌溉水管的最短長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點,且,求的值;
(2)若,是直線上的動點,過作圓的兩條切線,,切點分別為,,求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com