【題目】設(shè)點(diǎn)在以,為焦點(diǎn)的橢圓上.

(1)求橢圓的方程;

(2)經(jīng)過作直線于兩點(diǎn),交軸于點(diǎn),若,,且,求.

【答案】(1) (2)

【解析】

(1)根據(jù)橢圓的定義得到2a,由題干得到c=2,進(jìn)而得到方程;(2)設(shè)出AB、M點(diǎn)的坐標(biāo),根據(jù)向量關(guān)系得到A點(diǎn)坐標(biāo),代入橢圓方程得到關(guān)于的方程,同理得到關(guān)于的方程,進(jìn)而抽出、是方程的兩個根,解出即可得到.

(1)因?yàn)辄c(diǎn)P在以為焦點(diǎn)的橢圓C上,所以

所以.

又因?yàn)閏=2,所以

所以橢圓C的方程為

(2)設(shè)AB、M點(diǎn)的坐標(biāo)分別為A,),B,),M(0,).

2, ∴ (,

A點(diǎn)坐標(biāo)代入到橢圓方程中,得

去分母整理得 :

同理,由2可得:

、是方程的兩個根,

,又

二者聯(lián)立解得

或所以,所以

所以上述方程即為

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]在平面坐標(biāo)系中xOy中,已知直線l的參考方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù))。設(shè)p為曲線C上的動點(diǎn),求點(diǎn)P到直線l的距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了積極支持雄安新區(qū)建設(shè),鼓勵更多優(yōu)秀大學(xué)生畢業(yè)后能到新區(qū)去,某985高校組織了一次模擬招聘活動,現(xiàn)從考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,并按成績分成五組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,(由于某種原因,部分直方圖不夠清晰),同時規(guī)定成績不低于90分為“優(yōu)秀”,成績低于90分為“良好”,且只有成績“優(yōu)秀”的學(xué)生才能獲得專題測試資格.

(1)若已知分?jǐn)?shù)段的人數(shù)比為2:1,請補(bǔ)全損壞的直方圖;

(2)如果用分層抽樣的方法從成績?yōu)椤皟?yōu)秀”和“良好”中選出10人,設(shè)甲是選出的成績“優(yōu)秀”中的一個,若從選出的成績“優(yōu)秀”的學(xué)生中再任選2人參加兩項(xiàng)不同的專題測試(每人參加一種,二者互不相同),求甲被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),,數(shù)列的前項(xiàng)和,點(diǎn))均在函數(shù)的圖像上.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),是數(shù)列的前項(xiàng)和,求滿足)的最大正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,,六名同學(xué)參加一項(xiàng)比賽,決出第一到第六的名次.,三人去詢問比賽結(jié)果,裁判對說:“你和都不是第一名”;對說:“你不是最差的”;對說:“你比的成績都好”,據(jù)此回答六人的名次有_____________種不同情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

(Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為收看開幕式與性別有關(guān)?

(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男、女學(xué)生各選取多少人?

(ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會及冰雪項(xiàng)目宣傳介紹,求恰好選到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若函數(shù)在區(qū)間上為增函數(shù),求a的取值范圍;

若對任意恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于不等式的解集為.

(1)當(dāng)為空集時,求的取值范圍;

(2)在(1)的條件下,求的最小值;

(3)當(dāng)不為空集,且時,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,函數(shù)在區(qū)間上有意義且不單調(diào),求a的取值范圍;

(Ⅱ)若,,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案