【題目】設(shè)函數(shù)f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(1)討論f(x)的單調(diào)性;
(2)證明:當(dāng)x>1時,g(x)>0;
(3)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.

【答案】
(1)

解:由f(x)=ax2﹣a﹣lnx,得f′(x)=2ax﹣ = (x>0),

當(dāng)a≤0時,f′(x)<0在(0,+∞)成立,則f(x)為(0,+∞)上的減函數(shù);

當(dāng)a>0時,由f′(x)=0,得x= =

∴當(dāng)x∈(0, )時,f′(x)<0,當(dāng)x∈( ,+∞)時,f′(x)>0,

則f(x)在(0, )上為減函數(shù),在( ,+∞)上為增函數(shù);

綜上,當(dāng)a≤0時,f(x)為(0,+∞)上的減函數(shù),當(dāng)a>0時,f(x)在(0, )上為減函數(shù),在( ,+∞)上為增函數(shù);


(2)

證明:要證g(x)>0(x>1),即 >0,

即證 ,也就是證

令h(x)= ,則h′(x)=

∴h(x)在(1,+∞)上單調(diào)遞增,則h(x)min=h(1)=e,

即當(dāng)x>1時,h(x)>e,∴當(dāng)x>1時,g(x)>0;


(3)

解:由f(x)>g(x),得 ,

設(shè)t(x)= ,

由題意知,t(x)>0在(1,+∞)內(nèi)恒成立,

∵t(1)=0,

∴有t′(x)=2ax = ≥0在(1,+∞)內(nèi)恒成立,

令φ(x)= ,

則φ′(x)= =

當(dāng)x≥2時,φ′(x)>0,

令h(x)= ,h′(x)= ,函數(shù)在[1,2)上單調(diào)遞增,∴h(x)min=h(1)=﹣1.

又2a≥1,e1x>0,∴1<x<2,φ′(x)>0,

綜上所述,x>1,φ′(x)>0,φ(x)在區(qū)間(1,+∞)單調(diào)遞增,

∴t′(x)>t′(1)≥0,即t(x)在區(qū)間(1,+∞)單調(diào)遞增,

∴a≥


【解析】(1)求導(dǎo)數(shù),分類討論,即可討論f(x)的單調(diào)性;
(2)要證g(x)>0(x>1),即 >0,即證 ,也就是證 ;
(3)由f(x)>g(x),得 ,設(shè)t(x)= ,由題意知,t(x)>0在(1,+∞)內(nèi)恒成立,再構(gòu)造函數(shù),求導(dǎo)數(shù),即可確定a的取值范圍;
本題考查導(dǎo)數(shù)知識的綜合運(yùn)用,考查函數(shù)的單調(diào)性,不等式的證明,考查恒成立成立問題,正確構(gòu)造函數(shù),求導(dǎo)數(shù)是關(guān)鍵.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的奇偶性的相關(guān)知識,掌握偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱,以及對利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的理解,了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若 的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實(shí)數(shù)a的取值范圍為(  )

A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的a值;
(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù).說明理由;
(3)估計(jì)居民月均用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(ax+1)(x≥0,a>0), .

(1)討論函數(shù)y=f(x)-g(x)的單調(diào)性;

(2)若不等式f(x)≥g(x)+1在x∈[0,+∞)時恒成立,求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)fx)=ax2+x

(Ⅰ)當(dāng)a>0時,求證:對任意的x1,x2R都有[fx1)+fx2)]成立;

(Ⅱ)當(dāng)x∈[0,2]時,|fx)|≤1恒成立,求實(shí)數(shù)a的取值范圍;

(Ⅲ)若a=,點(diǎn)pm,n2)(mZnZ)是函數(shù)y=fx)圖象上的點(diǎn),求mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)的圖象上存在兩點(diǎn),使得函數(shù)的圖象在這兩點(diǎn)處的切線互相垂直,則稱y=f(x)具有T性質(zhì).下列函數(shù)中具有T性質(zhì)的是( 。
A.y=sinx
B.y=lnx
C.y=ex
D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,橢圓C: =1(a>b>0)的離心率是 ,拋物線E:x2=2y的焦點(diǎn)F是C的一個頂點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)P是E上的動點(diǎn),且位于第一象限,E在點(diǎn)P處的切線l與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過P且垂直于x軸的直線交于點(diǎn)M.
①求證:點(diǎn)M在定直線上;
②直線l與y軸交于點(diǎn)G,記△PFG的面積為S1 , △PDM的面積為S2 , 求 的最大值及取得最大值時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.

(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

(2)求這三個人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).

查看答案和解析>>

同步練習(xí)冊答案