【題目】如圖,已知圓O是△ABC的外接圓,AB=BC,AD是 BC邊上的高,AE 是圓O的直徑,過(guò)點(diǎn)C作圓O的切線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:ACBC=ADAE;
(2)若AF=2,CF=2 ,求AE的長(zhǎng).
【答案】
(1)證明:如圖所示,連接BE.
∵AE是⊙O的直徑,∴∠ABE=90°.
又∠E與∠ACB都是 所對(duì)的圓周角,
∴∠E=∠ACB.
∵AD⊥BC,∠ADC=90°.
∴△ABE∽△ADC,
∴AB:AD=AE:AC,
∴ABAC=ADAE.
又AB=BC,
∴BCAC=ADAE.
(2)解:∵CF是⊙O的切線(xiàn),
∴CF2=AFBF,
∵AF=2,CF=2 ,
∴(2 )2=2BF,解得BF=4.
∴AB=BF﹣AF=2.
∵∠ACF=∠FBC,∠CFB=∠AFC,
∴△AFC∽△CFB,
∴AF:FC=AC:BC,
∴AC= = .
∴cos∠ACD= ,
∴sin∠ACD= =sin∠AEB,
∴AE= .
【解析】(1)如圖所示,連接BE.由于AE是⊙O的直徑,可得∠ABE=90°.利用∠E與∠ACB都是 所對(duì)的圓周角,可得∠E=∠ACB.進(jìn)而得到△ABE∽△ADC,即可得到.(2)利用切割線(xiàn)定理可得CF2=AFBF,可得BF.再利用△AFC∽△CFB,可得AF:FC=AC:BC,進(jìn)而根據(jù)sin∠ACD=sin∠AEB,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分10分) 已知P(3,2),一直線(xiàn)過(guò)點(diǎn)P,
①若直線(xiàn)在兩坐標(biāo)軸上截距之和為12,求直線(xiàn)的方程;
②若直線(xiàn)與x、y軸正半軸交于A、B兩點(diǎn),當(dāng)面積為12時(shí)求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)今年初用72萬(wàn)元購(gòu)買(mǎi)一套新設(shè)備用于生產(chǎn),該設(shè)備第一年需各種費(fèi)用12萬(wàn)元,從第二年起,每年所需費(fèi)用均比上一年增加4萬(wàn)元,該設(shè)備每年的總收入為50萬(wàn)元,設(shè)生產(chǎn)x年的 盈利總額為y萬(wàn)元.寫(xiě)出y與x的關(guān)系式;
①經(jīng)過(guò)幾年生產(chǎn),盈利總額達(dá)到最大值?最大值為多少?
②經(jīng)過(guò)幾年生產(chǎn),年平均盈利達(dá)到最大值?最大值為多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m, n是兩條不同的直線(xiàn),是三個(gè)不同的平面, 給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號(hào)是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷(xiāo)售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.
(1)若商店一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(2)商店記錄了50天該商品的日需求量(單位:件),整理得表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 10 | 15 | 10 | 5 |
①假設(shè)該店在這50天內(nèi)每天購(gòu)進(jìn)10件該商品,求這50天的日利潤(rùn)(單位:元)的平均數(shù);
②若該店一天購(gòu)進(jìn)10件該商品,記“當(dāng)天的利潤(rùn)在區(qū)間[400,550]”為事件A,求P(A)的估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐ABCD的棱長(zhǎng)都相等,E是AB的中點(diǎn),則異面直線(xiàn)CE與BD所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣x,若f(cos2θ+2msinθ)+f(﹣2﹣2m)>0對(duì)任意的θ∈(0, )恒成立,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知圓的圓心是直線(xiàn)與軸的交點(diǎn),且與直線(xiàn)相切,求圓的標(biāo)準(zhǔn)方程;
(2)已知圓,直線(xiàn)過(guò)點(diǎn)與圓相交于兩點(diǎn),若,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:,直線(xiàn) ,過(guò)的一條動(dòng)直線(xiàn)與直線(xiàn)相交于N,與圓C相交于P,Q兩點(diǎn),M是PQ中點(diǎn).
(1)當(dāng)時(shí),求直線(xiàn)的方程;
(2)設(shè),試問(wèn)是否為定值,若為定值,請(qǐng)求出的值;若不為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com