【題目】已知橢圓的左、右焦點(diǎn),,離心率,短軸長(zhǎng)為2.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),的延長(zhǎng)線于橢圓交于點(diǎn),的延長(zhǎng)線于橢圓交于點(diǎn),求面積的最大值

【答案】(1); (2).

【解析】試題分析】(1)依據(jù)題設(shè)建立方程組進(jìn)行求解;(2)依據(jù)題設(shè)條件運(yùn)用直線與橢圓的位置關(guān)系建立三角形面積的目標(biāo)函數(shù),運(yùn)用不等式求得其最值從而使得問(wèn)題獲解。

(1)橢圓中,

過(guò)其中兩個(gè)端點(diǎn)的直線斜率為,∴①,

過(guò)兩個(gè)焦點(diǎn)和一個(gè)頂點(diǎn)的三角形面積為1,∴②;

③,

用①②③解得,;

∴橢圓的方程為.

(2)當(dāng)直線的斜率不存在時(shí),

可知,,,

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,

聯(lián)立方程化簡(jiǎn)得,

,

,

,

,

點(diǎn)到直線的距離,

;

綜上,的面積的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2016高考山東文數(shù)】已知橢圓C:(a>b>0)的長(zhǎng)軸長(zhǎng)為4,焦距為2.

I)求橢圓C的方程;

()過(guò)動(dòng)點(diǎn)M(0,m)(m>0)的直線交x軸與點(diǎn)N,交C于點(diǎn)A,P(P在第一象限),且M是線段PN的中點(diǎn).過(guò)點(diǎn)P作x軸的垂線交C于另一點(diǎn)Q,延長(zhǎng)線QM交C于點(diǎn)B.

(i)設(shè)直線PM、QM的斜率分別為k、k',證明為定值.

(ii)求直線AB的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得 , =20, =184, =720.
(1)求家庭的月儲(chǔ)蓄y關(guān)于月收入x的線性回歸方程 ;
(2)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(其中ω>0|φ|< )圖象相鄰對(duì)稱軸的距離為 ,一個(gè)對(duì)稱中心為(﹣ ,0),為了得到g(x)=cosωx的圖象,則只要將f(x)的圖象(
A.向右平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向左平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中是自然對(duì)數(shù)的底數(shù).

(Ⅰ)判斷函數(shù)內(nèi)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由;

(Ⅱ),,使得不等式成立,試求實(shí)數(shù)的取值范圍;

(Ⅲ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人約定在中午12時(shí)到下午1時(shí)之間到某站乘公共汽車,又知這段時(shí)間內(nèi)有4班公共汽車.設(shè)到站時(shí)間分別為12:15,12:30,12:45,1:00.如果他們約定:
①見(jiàn)車就乘;
②最多等一輛.
試分別求出在兩種情況下兩人同乘一輛車的概率.假設(shè)甲乙兩人到達(dá)車站的時(shí)間是相互獨(dú)立的,且每人在中午12點(diǎn)到1點(diǎn)的任意時(shí)刻到達(dá)車站是等可能的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:任意兩個(gè)等邊三角形都是相似的.

①它的否定是_________________________________________________________;

②否命題是_____________________________________________________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩名同學(xué)在5次數(shù)學(xué)考試中的成績(jī)統(tǒng)計(jì)如下面的莖葉圖所示,若A,B兩人的平均成績(jī)分別是xA , xB , 觀察莖葉圖,下列結(jié)論正確的是(

A.xA<xB , B比A成績(jī)穩(wěn)定
B.xA>xB , B比A成績(jī)穩(wěn)定
C.xA<xB , A比B成績(jī)穩(wěn)定
D.xA>xB , A比B成績(jī)穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上的點(diǎn),離心率為.

(1)求橢圓的方程;

(2)點(diǎn)在橢圓上上,若點(diǎn)與點(diǎn)關(guān)于原點(diǎn)的對(duì)稱,連接,并延長(zhǎng)與橢圓的另一個(gè)交點(diǎn)為,連接,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案