【題目】已知、是雙曲線的兩個頂點,點是雙曲線上異于、的一點,為坐標(biāo)原點,射線交橢圓于點,設(shè)直線、、、的斜率分別為、、、.
(1)若雙曲線的漸近線方程是,且過點,求的方程;
(2)在(1)的條件下,如果,求的面積;
(3)試問:是否為定值?如果是,請求出此定值;如果不是,請說明理由.
【答案】(1);(2)的面積為;(3)定值為.
【解析】
(1)設(shè)雙曲線的方程為,將點的坐標(biāo)代入雙曲線的方程,求出的值,可求出雙曲線的方程;
(2)設(shè)點的坐標(biāo)為,設(shè)直線的方程為,則,由點在雙曲線上得出,可得出,利用斜率公式以及條件可求出射線的方程,由此可得出點的縱坐標(biāo),由此計算出的面積;
(3)由題意得出,設(shè)點、,則,利用斜率公式得出,,由此可得出的值.
(1)由于雙曲線的漸近線方程為,可設(shè)雙曲線的方程為,
將點的坐標(biāo)代入雙曲線的方程得,
因此,雙曲線的方程為;
(2)設(shè)射線所在直線的方程為,設(shè)點,則,
因為點在雙曲線上,所以,可得.
,.
所以,射線所在直線的方程為.
聯(lián)立直線的方程與橢圓的方程,解得,
所以,點的縱坐標(biāo)為,因此,的面積為;
(3)設(shè)點、,
由于點在雙曲線上,則,得,
,,,
同理可得,因此,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個正和一個平行四邊形ABDE在同一個平面內(nèi),其中,,AB,DE的中點分別為F,G.現(xiàn)沿直線AB將翻折成,使二面角為,設(shè)CE中點為H.
(1)(i)求證:平面平面AGH;
(ii)求異面直線AB與CE所成角的正切值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在區(qū)間內(nèi)的單調(diào)函數(shù),且對任意,都有,設(shè)為的導(dǎo)函數(shù),,則函數(shù)的零點個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在的表格填上數(shù)字,設(shè)在第i行第j列所組成的數(shù)字為,,,則表格中共有5個1的填表方法種數(shù)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意的,若數(shù)列同時滿足下列兩個條件,則稱數(shù)列具有“性質(zhì)m”:;存在實數(shù)M,使得成立.
數(shù)列、中,、(),判斷、是否具有“性質(zhì)m”;
若各項為正數(shù)的等比數(shù)列的前n項和為,且,,求證:數(shù)列具有“性質(zhì)m”;
數(shù)列的通項公式對于任意,數(shù)列具有“性質(zhì)m”,且對滿足條件的M的最小值,求整數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng),時,求函數(shù)的最大值;
(2)若函數(shù)存在唯一零點,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A是同時符合以下性質(zhì)的函數(shù)f(x)組成的集合:
①x∈[0,+∞),都有f(x)∈(1,4];②f(x)在[0,+∞)上是減函數(shù).
(1)判斷函數(shù)f1(x)=2-和f2(x)=1+3· (x≥0)是否屬于集合A,并簡要說明理由;
(2)把(1)中你認(rèn)為是集合A中的一個函數(shù)記為g(x),若不等式g(x)+g(x+2)≤k對任意的x≥0總成立,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com