【題目】設(shè)函數(shù) ).

(Ⅰ)求函數(shù)的單調(diào)增區(qū)間;

(Ⅱ)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說明理由.

【答案】(Ⅰ)當(dāng)時(shí), 的單調(diào)增區(qū)間為; 時(shí), 的單調(diào)增區(qū)間為;(Ⅱ)0.

【解析】試題分析:(Ⅰ)先求函數(shù)的導(dǎo)函數(shù),原函數(shù)的單調(diào)增區(qū)間即為使導(dǎo)函數(shù)大于零的區(qū)間,根據(jù)導(dǎo)函數(shù)分段討論 的不同取值范圍時(shí)的單調(diào)增區(qū)間即可.

(Ⅱ)單調(diào)遞增,存在唯一,使得,即,當(dāng)時(shí), ,當(dāng)時(shí), ,所以 求得的范圍,得到的范圍,得到最小整數(shù)值.

試題解析:(Ⅰ)

①當(dāng)時(shí),由,解得;

②當(dāng)時(shí),由,解得;

③當(dāng)時(shí),由,解得;

綜上所述,

當(dāng)時(shí), 的單調(diào)增區(qū)間為;

時(shí), 的單調(diào)增區(qū)間為.

(Ⅱ)當(dāng)時(shí), , ,

所以單調(diào)遞增, ,

所以存在唯一,使得,即,

當(dāng)時(shí), ,當(dāng)時(shí), ,

所以

,

記函數(shù),則上單調(diào)遞增,

所以,即

,且為整數(shù),得,

所以存在整數(shù)滿足題意,且的最小值為0.

點(diǎn)晴:本題主要考查導(dǎo)數(shù)的單調(diào)性,導(dǎo)數(shù)與極值點(diǎn)、不等式等知識(shí). 解答此類問題,應(yīng)該首先確定函數(shù)的定義域,否則,寫出的單調(diào)區(qū)間易出錯(cuò). 解決含參數(shù)問題及不等式問題注意兩個(gè)轉(zhuǎn)化:(1)利用導(dǎo)數(shù)解決含有參數(shù)的單調(diào)性問題可將問題轉(zhuǎn)化為不等式恒成立問題,要注意分類討論和數(shù)形結(jié)合思想的應(yīng)用.(2)將不等式的證明、方程根的個(gè)數(shù)的判定轉(zhuǎn)化為函數(shù)的單調(diào)性問題處理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線的焦點(diǎn)

(1)求橢圓的方程;

(2)已知、是橢圓上的兩點(diǎn), 是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).①若直線的斜率為,求四邊形面積的最大值;

②當(dāng) 運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α∈(0, ),β∈(0,π),且tan(α﹣β)= ,tanβ=﹣
(1)求tanα;
(2)求2α﹣β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為的棱形,且分別是的中點(diǎn).

(1)證明:平面

(2)若二面角的大小為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的極值;

(Ⅱ)若函數(shù)的圖像與函數(shù)的圖像在區(qū)間上有公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分為14分)已知定義域?yàn)?/span>R的函數(shù)是奇函數(shù).

1)求a,b的值;

2)若對(duì)任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,且a2+bc=b2+c2
(1)求∠A的大;
(2)若b=2,a= ,求邊c的大小;
(3)若a= ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足,數(shù)列滿足,且為等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案