【題目】如圖,為測量坡高MN,選擇A和另一個山坡的坡頂C為測量觀測點(diǎn).從A點(diǎn)測得M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測得∠MCA=60°.已知坡高BC=50米,則坡高MN=______米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界衛(wèi)生組織的最新研究報告顯示,目前中國近視患者人數(shù)多達(dá)6億,高中生和大學(xué)生的近視率均已超過七成,為了研究每周累計戶外暴露時間(單位:小時)與近視發(fā)病率的關(guān)系,對某中學(xué)一年級200名學(xué)生進(jìn)行不記名問卷調(diào)查,得到如下數(shù)據(jù):
每周累積戶外暴露時間(單位:小時) | 不少于28小時 | ||||
近視人數(shù) | 21 | 39 | 37 | 2 | 1 |
不近視人數(shù) | 3 | 37 | 52 | 5 | 3 |
(1)在每周累計戶外暴露時間不少于28小時的4名學(xué)生中,隨機(jī)抽取2名,求其中恰有一名學(xué)生不近視的概率;
(2)若每周累計戶外暴露時間少于14個小時被認(rèn)證為“不足夠的戶外暴露時間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為不足夠的戶外暴露時間與近視有關(guān)系?
近視 | 不近視 | |
足夠的戶外暴露時間 | ||
不足夠的戶外暴露時間 |
附:
P | 0.050 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓C與x軸相切于點(diǎn)T(2,0),與y軸的正半軸相交于A,B兩點(diǎn)(A在B的上方),且AB=3.
(1)求圓C的方程;
(2)直線BT上是否存在點(diǎn)P滿足PA2+PB2+PT2=12,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由;
(3)如果圓C上存在E,F(xiàn)兩點(diǎn),使得射線AB平分∠EAF,求證:直線EF的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.數(shù)列前n項(xiàng)和為,且滿足,.
(1)求數(shù)列的通項(xiàng)公式:
(2)若,求正整數(shù)m的值;
(3)是否存在正整數(shù)m,使得恰好為數(shù)列中的一項(xiàng)?若存在,求出所有滿足條件的m值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的面積為,且與軸、軸分別交于兩點(diǎn).
(1)求圓的方程;
(2)若直線與線段相交,求實(shí)數(shù)的取值范圍;
(3)試討論直線與(1)小題所求圓的交點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個小球,分別寫有“美、麗、中、國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機(jī)模擬的方法估計恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“中、國、美、麗”這四個字,以每三個隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
232 321 230 023 123 021 132 220 001
231 130 133 231 031 320 122 103 233
由此可以估計,恰好第三次就停止的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個動點(diǎn),求的最大值;
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A的動直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓過點(diǎn),且與直線相切于點(diǎn),求圓的方程;
(2)已知圓與軸相切,圓心在直線上,且圓被直線截得的弦長為,求圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com