【題目】已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2﹣x;
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(x)<0的解集.
【答案】(1),f(x)=,(2){x|x<﹣1或0<x<1}
【解析】
(1)設x<0,則﹣x>0,由當x≥0時,f(x)=x2﹣x,將﹣x>0代入解析式,由奇偶性即可求解.
(2)由(1)分段解不等式,再取并集即可.
(1)設x<0,則﹣x>0,∵當x≥0時,f(x)=x2﹣x,
∴f(﹣x)=x2+x,
∵f(x)是定義在R上的奇函數(shù),
∴f(x)=﹣f(﹣x)=﹣x2﹣x,
∴當x<0時,f(x)=﹣x2﹣x,
綜上所述,f(x)=;
(2)當x≥0時,f(x)=x2﹣x<0,∴0<x<1;
當x<0時,f(x)=﹣x2﹣x<0,∴x<﹣1或x>0,∴x<﹣1,
綜上所述,不等式f(x)<0的解集為{x|x<﹣1或0<x<1}.
科目:高中數(shù)學 來源: 題型:
【題目】某校有、、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎,在結(jié)果揭曉前,甲、乙、丙、丁四位同學對這四件參賽作品的獲獎情況預測如下.
甲說:“、同時獲獎.”
乙說:“、不可能同時獲獎.”
丙說:“獲獎.”
丁說:“、至少一件獲獎”
如果以上四位同學中有且只有兩位同學的預測是正確的,則獲獎的作品是( )
A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為4,動點E,F在棱上,動點P,Q分別在棱AD,CD上。若,,,(大于零),則四面體PEFQ的體積
A.與都有關(guān)B.與m有關(guān),與無關(guān)
C.與p有關(guān),與無關(guān)D.與π有關(guān),與無關(guān)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),g(x)=f(x)﹣3.
(1)判斷并證明函數(shù)g(x)的奇偶性;
(2)判斷并證明函數(shù)g(x)在(1,+∞)上的單調(diào)性;
(3)若f(m2﹣2m+7)≥f(2m2﹣4m+4)成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】蚌埠市某中學高三年級從甲(文)、乙(理)兩個科組各選出名學生參加高校自主招生數(shù)學選拔考試,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲組學生的平均分是,乙組學生成績的中位數(shù)是.
(1)求和的值;
(2)計算甲組位學生成績的方差;
(3)從成績在分以上的學生中隨機抽取兩名學生,求甲組至少有一名學生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)(是自然對數(shù)的底數(shù))
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間內(nèi)無零點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求的解析式;
(2)試判斷的單調(diào)性,并用定義法證明;
(3)若存在,使得不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),為的導函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上存在最大值0,求函數(shù)在上的最大值;
(3)求證:當時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,點,分別為棱,的中點,點為上底面的中心,過,,三點的平面把正方體分為兩部分,其中含的部分為,不含的部分為,連結(jié)和的任一點,設與平面所成角為,則的最大值為
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com