⊙O的兩條弦AB、CD相交于點P,已知AP=2cm,BP=6cm,CP:PD=1:3,則CD=______.
∵⊙O的兩條弦AB、CD相交于點P,
∴PA×PB=PC×PD,
又∵AP=2cm,BP=6cm,CP:PD=1:3,
∴設PC=x,PD=3x,可得2×6=3x2,解之得x=2(舍負)
因此CD=4x=8.
故答案為:8
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某高校共有學生15 000人,其中男生10 500人,女生4 500人,為調查該校學生每周平均體育運動的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4], (4,6], (6,8], (8,10], (10,12],估計該校學生每周平均體育運動時間超過4小時的概率;

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.
附:
P(K2≥k0)
0.10
0.05
0.010
0.005
k0
2.706
3.841
6.635
7.879
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:如圖所示,從Rt△ABC的兩直角邊AB,AC向外作正方形ABFG及ACDE,CF,BD分別交AB,AC于P,Q.求證:AP=AQ.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,AE切⊙D于點E,AC=CD=DB=10,則線段AE的長為( 。
A.10
2
B.16C.10
3
D.18

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

選修4-1:幾何證明選講
如圖,已知四邊形ABCD內接于ΘO,且AB是的ΘO直徑,過點D的ΘO的切線與BA的延長線交于點M.
(1)若MD=6,MB=12,求AB的長;
(2)若AM=AD,求∠DCB的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A、B、C、D為圓O上的四點,直線DE為圓O的切線,ACDE,AC與BD相交于H點
(Ⅰ)求證:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(1)(不等式選講)已知函數(shù)f(x)=log2(|x-1|+|x-5|-a),當函數(shù)f(x)的定義域為R時,則實數(shù)a的取值范圍為______
(2)(幾何證明選講)如圖,AB是半圓O的直徑,點C在半圓上,CD⊥AB,垂足為D,且AD=5DB,設∠COD=θ,則tanθ的值為______.

(3)(坐標系與參數(shù)方程)圓O1和圓O2的極坐標方程分別為ρ=4cosθ,ρ=-4sinθ,則經過兩圓圓心的直線的直角坐標方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)一工廠生產甲、乙、丙三種樣式的杯子,每種樣式均有兩種型號,某天的產量如右表(單位:個):按樣式分層抽樣的方法在這個月生產的杯子中抽取個,其中有甲樣式杯子個.
型號
甲樣式
乙樣式
丙樣式








 
(1)求的值; 
(2)用分層抽樣的方法在甲樣式杯子中抽取一個容量為的樣本,從這個樣本中任取個杯子,求至少有杯子的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,DE∥BC,DF∥AC,AE:AC=3:5,DE =6,則
|PF|有取值范圍為           

查看答案和解析>>

同步練習冊答案