【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實線所示. 是等腰梯形, 米, (在的延長線上, 為銳角). 圓與都相切,且其半徑長為米. 是垂直于的一個立柱,則當(dāng)的值設(shè)計為多少時,立柱最矮?
【答案】當(dāng)時,立柱最矮.
【解析】試題分析:利用題意建立直角坐標(biāo)系,得到關(guān)于的函數(shù): ,求導(dǎo)之后討論函數(shù)的單調(diào)性可知時取得最值.
試題解析:
解:方法一:如圖所示,以所在直線為軸,以線段
的垂直平分線為軸,建立平面直角坐標(biāo)系.
因為, ,所以直線的方程為
,
即.
設(shè)圓心,由圓與直線相切,
得,
所以.
令, ,則, 設(shè), . 列表如下:
- | 0 | + | |
減 | 極小值 | 增 |
所以當(dāng),即時, 取最小值. 答:當(dāng)時,立柱最矮.
方法二:如圖所示,延長交于點,過點作于,
則, .
在中, . 在中, .
所以.
(以下同方法一)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)若討論的單調(diào)性;
(Ⅱ)若過點可作函數(shù)圖象的兩條不同切線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)=sin(2x+ ),下列命題: ①函數(shù)圖象關(guān)于直線x=﹣ 對稱;
②函數(shù)圖象關(guān)于點( ,0)對稱;
③函數(shù)圖象可看作是把y=sin2x的圖象向左平移個 單位而得到;
④函數(shù)圖象可看作是把y=sin(x+ )的圖象上所有點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變)而得到;其中正確的命題是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).
(I)求的解析式及單調(diào)遞減區(qū)間;
(II)是否存在常數(shù),使得對于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級共有學(xué)生195人,其中女生105人,男生90人.現(xiàn)采用按性別分層抽樣的方法,從中抽取13人進(jìn)行問卷調(diào)查.設(shè)其中某項問題的選擇分別為“同意”、“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調(diào)查人答卷情況的部分信息.
同意 | 不同意 | 合計 | |
女學(xué)生 | 4 | ||
男學(xué)生 | 2 |
(Ⅰ)完成上述統(tǒng)計表;
(Ⅱ)根據(jù)上表的數(shù)據(jù)估計高三年級學(xué)生該項問題選擇“同意”的人數(shù);
(Ⅲ) 從被抽取的女生中隨機選取2人進(jìn)行訪談,求選取的2名女生中至少有一人選擇“同意”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)是奇函數(shù),求實數(shù)的值;
(2)若對任意的實數(shù),函數(shù)(為實常數(shù))的圖象與函數(shù)的圖象總相切于一個定點.
① 求與的值;
② 對上的任意實數(shù),都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中, 為直角梯形, , ,四邊形為等腰梯形, ,已知, , .
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知,在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù));在以坐標(biāo)原點為極點, 軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程是.
(Ⅰ)求證: ;
(Ⅱ)設(shè)點的極坐標(biāo)為, 為直線, 的交點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com