【題目】如圖,三棱柱中,側(cè)面是菱形,.
(1)證明:;
(2)若,,,求直線(xiàn)與平面所成角的正弦值.
【答案】(1)見(jiàn)解析(2)
【解析】
(1)連接交于點(diǎn),連接,可證平面,得B1C⊥AO,B10=CO,進(jìn)而可得AC=AB1;(2)先根據(jù)已知條件證明平面以為原點(diǎn),所在直線(xiàn)為坐標(biāo)軸建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量,然后利用向量公式即可求得結(jié)果.
(1)連接交于點(diǎn),連接,
∵四邊形是菱形,∴且為中點(diǎn),
∵,,∴平面,
平面,∴,
為中點(diǎn),為的垂直平分線(xiàn),
∴.
(2)不妨設(shè),則,,
∵,∴,,
又,,∴平面
(方法一)以為原點(diǎn),所在直線(xiàn)為坐標(biāo)軸建立空間直角坐標(biāo)系,
則,,,
設(shè)平面的一個(gè)法向量為,則
,
,設(shè),
直線(xiàn)與平面所成角的正弦值,即直線(xiàn)與平面所成角的正弦值為
(方法二)設(shè)點(diǎn)到平面的距離為,
三棱錐的體積
三棱錐的體積
解,得
直線(xiàn)與平面所成角的正弦值,即直線(xiàn)與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)雙曲線(xiàn)的兩支為(如圖),正三角形PQR的三頂點(diǎn)位于此雙曲線(xiàn)上。
(1)求證:P、Q、R不能都在雙曲線(xiàn)的同一支上;
(2)設(shè)P(-1,-1)在上,Q、R在上。求頂點(diǎn)Q、R的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)求曲線(xiàn)的直角坐標(biāo)方程及曲線(xiàn)上的動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;
(Ⅱ)若曲線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)設(shè)關(guān)于的方程的兩個(gè)不等實(shí)根,求證:(其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | π | 2π | |||
x | |||||
0 | 4 | -4 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫(xiě)在答題卡上相應(yīng)位置,并直接寫(xiě)出函數(shù)f(x)的解析式;
(2)將圖象上所有點(diǎn)向左平行移動(dòng)θ()個(gè)單位長(zhǎng)度,得到的圖象.若圖象的一個(gè)對(duì)稱(chēng)中心為,求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①“數(shù)列為等比數(shù)列”是“數(shù)列為等比數(shù)列”的充分不必要條件;
②“”是“函數(shù)在區(qū)間上為增函數(shù)”的充要條件;
③“”是“直線(xiàn)與直線(xiàn)互相垂直”的充要條件;
④設(shè),,分別是三個(gè)內(nèi)角,,所對(duì)的邊,若,,則“”是“”的必要不充分條件.其中,真命題的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表一:男生
男生 | 等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 5 |
表二:女生
女生 | 等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 3 |
(1)求,的值;
(2)從表二的非優(yōu)秀學(xué)生中隨機(jī)抽取2人交談,求所選2人中恰有1人測(cè)評(píng)等級(jí)為合格的概率;
(3)由表中統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
男生 | 女生 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) | 45 |
參考公式:,其中.
參考數(shù)據(jù):
0.01 | 0.05 | 0.01 | |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABDC中,,,,,.
(1)若S是直角梯形ABDC所在平面外一點(diǎn),畫(huà)出平面SBD和平面SAC的交線(xiàn),并說(shuō)明理由;
(2)直角梯形ABDC繞直線(xiàn)AC所在直線(xiàn)旋轉(zhuǎn)一周所得幾何體名稱(chēng)是什么?并求出其體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)復(fù)數(shù)與復(fù)平面上點(diǎn)對(duì)應(yīng).
(1)若是關(guān)于的一元二次方程的一個(gè)虛根,且,求實(shí)數(shù)的值;
(2)設(shè)復(fù)數(shù)滿(mǎn)足條件(其中、常數(shù)),當(dāng)為奇數(shù)時(shí),動(dòng)點(diǎn)的軌跡為,當(dāng)為偶數(shù)時(shí),動(dòng)點(diǎn)的軌跡為,且兩條曲線(xiàn)都經(jīng)過(guò)點(diǎn),求軌跡與的方程;
(3)在(2)的條件下,軌跡上存在點(diǎn),使點(diǎn)與點(diǎn)的最小距離不小于,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com