【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),將曲線上所有點的橫坐標縮短為原來的,縱坐標縮短為原來的,得到曲線,在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.

(1)求曲線的極坐標方程及直線的直角坐標方程;

(2)設(shè)點為曲線上的任意一點,求點到直線的距離的最大值.

【答案】(1)曲線的極坐標方程為,直線的直角坐標方程;(2).

【解析】

1)由圖象變換得到曲線的參數(shù)方程為為參數(shù)),消去參數(shù)可得直角坐標方程,再化為極坐標方程即可.由直線的極坐標方程并結(jié)合互化公式可得直線的直角坐標方程.(2)設(shè),根據(jù)點到直線的距離公式和三角函數(shù)的有關(guān)知識可得最大值.

(1)曲線的參數(shù)方程為為參數(shù)),

根據(jù)圖象變換可得曲線的參數(shù)方程為為參數(shù)),

消去方程中的可得普通方程為

代入上式得

所以曲線的極坐標方程

直線的極坐標方程為,即

代入上式,得

所以直線的直角坐標方程為

(2)設(shè) 為曲線上的任意一點,

則點到直線的距離

∴當時,有最大值,

∴點到直線的距離的最大值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某區(qū)選派7名隊員代表本區(qū)參加全市青少年圍棋錦標賽,其中3名來自A學校且1名為女棋手,另外4名來自B學校且2名為女棋手從這7名隊員中隨機選派4名隊員參加第一階段的比賽

求在參加第一階段比賽的隊員中,恰有1名女棋手的概率;

設(shè)X為選出的4名隊員中A、B兩校人數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù), , 為自然對數(shù)的底數(shù).

(Ⅰ)若函數(shù)存在兩個零點,求的取值范圍;

(Ⅱ)若對任意, , 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體ABCDE中,平面EAB,,,,MEC的中點.

求異面直線DMBE所成角的大;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),將曲線上所有點的橫坐標縮短為原來的,縱坐標縮短為原來的,得到曲線,在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.

(1)求曲線的極坐標方程及直線的直角坐標方程;

(2)設(shè)點為曲線上的任意一點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓x2+y2=8內(nèi)有一點P0-12),AB為過點P0且傾斜角為α的弦.

1)當α=時,求AB的長;

2)當弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質(zhì)量指數(shù)是一種反映和評價空氣質(zhì)量的方法,指數(shù)與空氣質(zhì)量對應如下表所示:

如圖是某城市2018年12月全月的指數(shù)變化統(tǒng)計圖.

根據(jù)統(tǒng)計圖判斷,下列結(jié)論正確的是( )

A. 整體上看,這個月的空氣質(zhì)量越來越差

B. 整體上看,前半月的空氣質(zhì)量好于后半月的空氣質(zhì)量

C. 數(shù)據(jù)看,前半月的方差大于后半月的方差

D. 數(shù)據(jù)看,前半月的平均值小于后半月的平均值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,,,,在線段上,是線段的中點,沿把平面折起到平面的位置,使平面,則下列命題正確的編號為______.

①二面角的余弦值為

②設(shè)折起后幾何體的棱的中點,則平面

;

④四棱錐的內(nèi)切球的表面積為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】宋元時期數(shù)學名著《算學啟蒙》中有關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖是源于其思想的一個程序框圖,若輸入,則輸出的等于( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

同步練習冊答案