【題目】如圖,點為正方形邊上異于點,的動點,將沿翻折成,在翻折過程中,下列說法正確的是( )
A.存在點和某一翻折位置,使得
B.存在點和某一翻折位置,使得平面
C.存在點和某一翻折位置,使得直線與平面所成的角為45°
D.存在點和某一翻折位置,使得二面角的大小為60°
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線:與曲線:交于,兩點,且的周長為.
(Ⅰ)求曲線的方程.
(Ⅱ)設(shè)過曲線焦點的直線與曲線交于,兩點,記直線,的斜率分別為,.求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國唐代天文學(xué)家、數(shù)學(xué)家張逐曾以“李白喝酒”為題編寫了如下一道題:“李白街上走,提壺去買酒,遇店加一倍,見花喝一斗(計量單位),三遇店和花,喝光壺中酒.”問最后一次遇花時有酒________斗,原有酒________斗.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓交于兩點,且(其中為坐標(biāo)原點),若橢圓的離心率滿足,則橢圓長軸的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第30屆夏季奧運會將于2012年7月27日在倫敦舉行,當(dāng)?shù)啬硨W(xué)校招募了8名男志愿者和12名女志愿者.將這20名志愿者的身高編成如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個子”,身高在180cm以下(不包括180cm)定義為“非高個子”,且只有“女高個子”才能擔(dān)任“禮儀小姐”.
(I)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?
(Ⅱ)若從所有“高個子”中選3名志愿者,用X表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出X的分布列,并求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為正方形邊上異于點,的動點,將沿翻折成,在翻折過程中,下列說法正確的是( )
A.存在點和某一翻折位置,使得
B.存在點和某一翻折位置,使得平面
C.存在點和某一翻折位置,使得直線與平面所成的角為45°
D.存在點和某一翻折位置,使得二面角的大小為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過拋物線的焦點且與軸垂直的直線與拋物線在第一象限交于點,的面積為,其中為坐標(biāo)原點.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若,,為拋物線上的兩個不同的點,直線,的斜率分別為,,且,求點到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)討論在上的單調(diào)性;
(2)當(dāng)時,若存在正實數(shù),使得對,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知項數(shù)為的數(shù)列滿足如下條件:①;②若數(shù)列滿足其中則稱為的“伴隨數(shù)列”.
(I)數(shù)列是否存在“伴隨數(shù)列”,若存在,寫出其“伴隨數(shù)列”;若不存在,請說明理由;
(II)若為的“伴隨數(shù)列”,證明:;
(III)已知數(shù)列存在“伴隨數(shù)列”且求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com