【題目】設(shè)全集U={x∈Z|﹣2<x<4},集合S與T都為U的子集,S∩T={2},(US)∩T={﹣1},(US)∩(UT)={1,3},則下列說法正確的是( 。
A.0屬于S,且0屬于T
B.0屬于S,且0不屬于T
C.0不屬于S但0屬于T
D.0不屬于S,也不屬于T
【答案】B
【解析】解:全集U={x∈Z|﹣2<x<4}={﹣1,0,1,2,3},集合S與T都為U的子集,S∩T={2},(US)∩T={﹣1},
∴T={﹣1,2}.
∵(US)∩(UT)={1,3},
∴S={0,2},US={﹣1,1,3},UT={0,1,3}.
∴0∈S,0T,A、C、D錯誤,B正確.
故選:B.
【考點(diǎn)精析】關(guān)于本題考查的交、并、補(bǔ)集的混合運(yùn)算,需要了解求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(l,2)在直線x+y+a=0的上方的平面區(qū)域,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,設(shè)S1=a1+a2+…+an , S2=an+1+an+2+…+a2n , S3=a2n+1+a2n+2+…+a3n , 則S1 , S2 , S3關(guān)系為( )
A.等差數(shù)列
B.等比數(shù)列
C.等差數(shù)列或等比數(shù)列
D.都不對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x||x﹣a|<1,x∈R},B={x||x﹣b|>2,x∈R}.若AB,則實(shí)數(shù)a,b必滿足( 。
A.|a+b|≤3
B.|a+b|≥3
C.|a﹣b|≤3
D.|a﹣b|≥3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個直角三角形繞斜邊旋轉(zhuǎn)360°形成的空間幾何體為( 。
A.一個圓錐
B.一個圓錐和一個圓柱
C.兩個圓錐
D.一個圓錐和一個圓臺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f(x)>1﹣f′(x),f(0)=0,f′(x)是f(x)的導(dǎo)函數(shù),則不等式exf(x)>ex﹣1(其中e為自然對數(shù)的底數(shù))的解集為( )
A.(﹣∞,﹣1)∪(0,+∞)
B.(0,+∞)
C.(﹣∞,0)∪(1,+∞)
D.(﹣1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|.
(1)求不等式f(x)+x2﹣4>0的解集;
(2)設(shè)g(x)=﹣|x+7|+3m,若關(guān)于x的不等式f(x)<g(x)的解集非空,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果U={1,2,3,4,5},M={1,2,3},N={2,3,5},那么(CUM)∩N等于( 。
A.φ
B.{1,3}
C.{4}
D.{5}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x∈R||x|≤2},B={x∈R|x≤1},則A∩B=( )
A.(﹣∞,2]
B.[1,2]
C.[﹣2,2]
D.[﹣2,1]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com