【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中直線的傾斜角為,且經(jīng)過點(diǎn),以坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點(diǎn),過點(diǎn)的直線與曲線相交于兩點(diǎn),且

(1)平面直角坐標(biāo)系中,求直線的一般方程和曲線的標(biāo)準(zhǔn)方程;

(2)求證: 為定值.

【答案】(1),(2)

【解析】試題分析:(1)根據(jù)點(diǎn)斜式可得直線的一般方程,注意討論斜率不存在的情形;根據(jù)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,配方化為標(biāo)準(zhǔn)方程.(2)利用直線參數(shù)方程幾何意義求弦長(zhǎng):先列出直線參數(shù)方程,代入圓方程,根據(jù)及韋達(dá)定理可得,類似可得,相加即得結(jié)論.

試題解析:解:(1)因?yàn)橹本的傾斜角為,且經(jīng)過點(diǎn),

當(dāng)時(shí),直線垂直于軸,所以其一般方程為,

當(dāng)時(shí),直線的斜率為,所以其方程為

即一般方程為

因?yàn)?/span>的極坐標(biāo)方程為,所以,

因?yàn)?/span>,所以

所以曲線的標(biāo)準(zhǔn)方程為

(2)設(shè)直線的參數(shù)方程為為參數(shù)),

代入曲線的標(biāo)準(zhǔn)方程為

可得,即,

所以,

同理

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系并說明理由;

(Ⅱ)設(shè)直線與曲線的兩個(gè)交點(diǎn)分別為 ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,是同一個(gè)函數(shù)的是(
A. ,
B.f(x)=2log2x,
C.f(x)=ln(x﹣1)﹣ln(x+1),
D.f(x)=lg(1﹣x)+lg(1+x),g(x)=lg(1﹣x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=loga(x+1),(a>0,a≠1)的圖象經(jīng)過點(diǎn)(﹣ ,﹣2),圖象上有三個(gè)點(diǎn)A,B,C,它們的橫坐標(biāo)依次為t﹣1,t,t+1,(t≥1),記三角形ABC的面積為S(t),

(1)求f(x)的表達(dá)式;
(2)求S(1);
(3)是否存在正整數(shù)m,使得對(duì)于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)過點(diǎn)P(﹣1,﹣1),c為橢圓的半焦距,且c= b.過點(diǎn)P作兩條互相垂直的直線l1 , l2與橢圓C分別交于另兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)若直線l1的斜率為﹣1,求△PMN的面積;
(3)若線段MN的中點(diǎn)在x軸上,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)y=x3m9(m∈N*)的圖象關(guān)于y軸對(duì)稱,且在(0,+∞)上函數(shù)值隨x增大而減。
(1)求m的值;
(2)求滿足(a+1) <(3﹣2a) 的a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)的單調(diào)性并證明;
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P(﹣2,3)是函數(shù)y= 圖象上的點(diǎn),Q是雙曲線在第四象限這一分支上的動(dòng)點(diǎn),過點(diǎn)Q作直線,使其與雙曲線y= 只有一個(gè)公共點(diǎn),且與x軸、y軸分別交于點(diǎn)C、D,另一條直線y= x+6與x軸、y軸分別交于點(diǎn)A、B.則
(1)O為坐標(biāo)原點(diǎn),三角形OCD的面積為
(2)四邊形ABCD面積的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式:|2x﹣m|≤1的整數(shù)解有且僅有一個(gè)值為2.
(1)求整數(shù)m的值;
(2)在(1)的條件下,解不等式:|x﹣1|+|x﹣3|≥m.

查看答案和解析>>

同步練習(xí)冊(cè)答案