【題目】已知函數(shù),其中.

(1)若函數(shù)僅在處取得極值,求實數(shù)的取值范圍;

(2)若函數(shù)有三個極值點,,求證:.

【答案】(1);(2)詳見解析.

【解析】

(1),因為僅在處取得極值,則.再對a 分類討論,利用數(shù)形結(jié)合分析得到a的取值范圍;(2)由題得,由題意則有三個根,則有兩個零點,有一個零點,,再利用分析法證明.

解:(1)由,得,

僅在處取得極值,則,即.

,則,當(dāng)單調(diào)遞減,單調(diào)遞增,

,

∴當(dāng)時,,此時僅一個零點,

僅一個為極值點,

當(dāng)時,在同一處取得零點,此時,,

,

僅一個零點,則僅一個為極值點,所以a=e.

當(dāng)a>e時,顯然與已知不相符合.

.

(2)由,則.

由題意則有三個根,則有兩個零點,

有一個零點,,

,則

∴當(dāng)取極值,單調(diào)遞增,

,則有兩零點,,且

若證:,即證:

,,則,

即證: ,

上單調(diào)遞增,即證:,

,則證,

,,

.

恒成立,則為增函數(shù),

∴當(dāng)時,

得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓, 過點的直線與橢圓交于M、N兩點(M點在N點的上方),與軸交于點E.

(1)當(dāng)時,求點MN的坐標(biāo);

(2)當(dāng)時,設(shè),,求證:為定值,并求出該值;

(3)當(dāng)時,點D和點F關(guān)于坐標(biāo)原點對稱,若△MNF的內(nèi)切圓面積等于,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若為曲線上兩點, 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機的普及,使用手機上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個城市(總?cè)藬?shù)、經(jīng)濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:

(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合的關(guān)系?并指出是正相關(guān)還是負相關(guān);

(2)①求出關(guān)于的回歸方程;

②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預(yù)測長沙市一個月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù),回歸直線方程,

其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點分別為,右頂點為A,上頂點為B,且滿足向量

(1)若A,求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)P為橢圓上異于頂點的點,以線段PB為直徑的圓經(jīng)過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】惠州市某學(xué)校需要從甲、乙兩名學(xué)生中選1人參加數(shù)學(xué)競賽,抽取了近期兩人5次數(shù)學(xué)考試的分?jǐn)?shù),統(tǒng)計結(jié)果如下表:

第一次

第二次

第三次

第四次

第五次

80

85

71

92

87

90

76

75

92

82

1)若從甲、乙兩人中選出1人參加數(shù)學(xué)競賽,你認為選誰合適?請說明理由.

2)若數(shù)學(xué)競賽分初賽和復(fù)賽,在初賽中答題方案如下:

每人從5道備選題中隨機抽取3道作答,若至少答對其中2道,則可參加復(fù)賽,否則被淘汰.假設(shè)被選中參賽的學(xué)生只會5道備選題中的3道,求該學(xué)生能進人復(fù)賽的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標(biāo)原點為極點,x軸非負半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

寫出的普通方程和的直角坐標(biāo)方程;

相交于A,B兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個命題中正確的是(

A.空間的任何一個向量都可用其他三個向量表示

B.為空間向量的一組基底,則構(gòu)成空間向量的另一組基底

C.為直角三角形的充要條件是

D.任何三個不共線的向量都可構(gòu)成空間向量的一個基底

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為4的等邊三角形,,的中點.

1)證明:平面.

2)若是等邊三角形,求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案