【題目】下圖是國家統(tǒng)計(jì)局今年4月11日發(fā)布的2018年3月到2019年3月全國居民消費(fèi)價(jià)格的漲跌幅情況折線圖.(注:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比),根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是
A. 2018年3月至2019年3月全國居民消費(fèi)價(jià)格同比均上漲
B. 2018年3月至2019年3月全國居民消費(fèi)價(jià)格環(huán)比有漲有跌
C. 2019年3月全國居民消費(fèi)價(jià)格同比漲幅最大
D. 2019年3月全國居民消費(fèi)價(jià)格環(huán)比變化最快
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,FA為半徑的圓F交l于M.N點(diǎn).
(1)若,的面積為,求拋物線方程;
(2)若A.M.F三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到直線n、m距離的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),且),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求曲線與曲線交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),一個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2)若直線與軸交于點(diǎn),與橢圓交于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,側(cè)面⊥底面,,底面為直角梯形,其中
,O為中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求銳二面角A—C1D1—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,已知直線與曲線C交于不同的兩點(diǎn)A,B.
(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)P(1,2),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠要建造一個(gè)長方體無蓋貯水池,其容積為,深3m.如果池底每平方米的造價(jià)為200元,池壁每平方米的造價(jià)為150元,怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低總造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求不等式的解集
(2)若函數(shù),且有解,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com