【題目】已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k}(其中k為正常數(shù)).
(1)設(shè),求的取值范圍
(2)求證:當(dāng)時,不等式對任意恒成立
(3)求使不等式對任意恒成立的的范圍
【答案】(1);(2)見解析;(3).
【解析】
(1)利用基本不等式,其中和為定值,積有最大值;
(2)結(jié)合(1)中的范圍直接將左邊展開,利用u在上單調(diào)遞增即可比較;
(3)結(jié)合(2)將(3)轉(zhuǎn)化為求使對恒成立的的范圍,利用函數(shù)的單調(diào)性解決,或者作差法求解.
(1),當(dāng)且僅當(dāng)時等號成立,
故u的取值范圍為.
(2)
由,又k≥1,k2﹣1≥0,
∴f(u)=u在上是增函數(shù)
所以
即當(dāng)k≥1時不等式成立.
(3)
記,
則,
即求使對恒成立的k2的范圍.
由(2)知,要使
對任意(x1,x2)∈D恒成立,必有0<k<1,
因此1﹣k2>0,
∴函數(shù)在上遞減,在上遞增,
要使函數(shù)f(u)在上恒有,必有,即k4+16k2﹣16≤0,
解得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:
男 | 女 | 合計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
合計 | 60 | 50 | 110 |
由K2=,
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關(guān)”
C.有99%以上的把握認為“愛好該項運動與性別有關(guān)”
D.有99%以上的把握認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于無窮數(shù)列,若對任意,滿足且(是與無關(guān)的常數(shù)),則稱數(shù)列為數(shù)列.
(1)若(),判斷數(shù)列是否為數(shù)列,說明理由;
(2)設(shè),求證:數(shù)列是數(shù)列,并求常數(shù)的取值范圍;
(3)設(shè)數(shù)列(,),問數(shù)列是否為數(shù)列?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足:①;②所有項;③ .
設(shè)集合,將集合中的元素的最大值記為.換句話說, 是
數(shù)列中滿足不等式的所有項的項數(shù)的最大值.我們稱數(shù)列為數(shù)列的
伴隨數(shù)列.例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(1)若數(shù)列的伴隨數(shù)列為1,1,1,2,2,2,3,請寫出數(shù)列;
(2)設(shè),求數(shù)列的伴隨數(shù)列的前100之和;
(3)若數(shù)列的前項和(其中常數(shù)),試求數(shù)列的伴隨數(shù)列前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知原命題“如果,那么關(guān)于的不等式的解集為”,那么原命題、逆命題、否命題和逆否命題是假命題的共有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為拋物線的焦點,點在拋物線上,且.
(1)求拋物線的方程;
(2)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,正方形所在平面與正所在平面垂直,分別為的中點,在棱上.
(1)證明:平面.
(2)已知,點到的距離為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()的導(dǎo)函數(shù)為.
(Ⅰ)當(dāng)時,求的最小值;
(Ⅱ)若函數(shù)存在極值,試比較,,的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com