【題目】已知原命題“如果,那么關(guān)于的不等式的解集為”,那么原命題、逆命題、否命題和逆否命題是假命題的共有( )
A.1個B.2個C.3個D.4個
【答案】B
【解析】
根據(jù)四種命題之間的關(guān)系利用逆否命題的真假關(guān)系進(jìn)行判斷即可.
若不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集為”,
則根據(jù)題意需分兩種情況:
①當(dāng)a2﹣4=0時,即a=±2,
若a=2時,原不等式為4x﹣1≥0,解得x,故舍去,
若a=﹣2時,原不等式為﹣1≥0,無解,符合題意;
②當(dāng)a2﹣4≠0時,即a≠±2,
∵(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,
∴,解得﹣2<a,
綜上得,實數(shù)a的取值范圍是[﹣2,.
則當(dāng)﹣1≤a≤1時,命題為真命題,則命題的逆否命題為真命題,
反之不成立,即逆命題為假命題,否命題也為假命題,
故它的逆命題、否命題、逆否命題及原命題中是假命題的共有2個,
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),數(shù)列滿足,,數(shù)列滿足.
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè)數(shù)列滿足(),且中任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,求的取值范圍;
(3)設(shè)數(shù)列滿足(),求的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的上頂點為A,以A為圓心,橢圓的長半軸為半徑的圓與y軸的交點分別為、.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點A的直線與橢圓交于P、Q兩點,且,試探究直線是否過定點?若過定點,求出該定點的坐標(biāo),若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個不相等的非零向量,,兩組向量,,,,和,,,,,均由2個和3個排列而成,記,表示S所有可能取值中的最小值,則下列命題正確的是________.(寫出所有正確命題的編號)
①S有5個不同的值;②若,則與無關(guān);③若,則與無關(guān);④若,則;⑤若,,則與的夾角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在拋物線上,則當(dāng)點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k}(其中k為正常數(shù)).
(1)設(shè),求的取值范圍
(2)求證:當(dāng)時,不等式對任意恒成立
(3)求使不等式對任意恒成立的的范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為2的菱形,且.四邊形是平行四邊形,且.點,在平面內(nèi)的射影為,,且在上,四棱錐的體積為2.
(1)求證:平面平面;
(2)在上是否存在點,使平面?如果存在,是確定點的位置,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點,則異面直線AE與BF所成角的余弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐中,,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)為棱上一點,試確定點的位置,使得直線與平面所成角的正弦值為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com