【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若在區(qū)間上有最小值,求a的值.
【答案】(1)當(dāng)時(shí), 在R上為增函數(shù);
當(dāng)時(shí), 在,上為增函數(shù),在上為減函數(shù);
當(dāng)時(shí), 在,上為增函數(shù),在為減函數(shù).
(2)
【解析】
(1)求導(dǎo)后,對 分三種情況討論可得;
(2)利用第(1)問的單調(diào)性分三種情況,求得函數(shù)的最小值與已知最小值相等,列式可解得.
(1) ,
當(dāng)時(shí),則,所以在R上為增函數(shù);
當(dāng)時(shí),,所以在,上為增函數(shù),在上為減函數(shù);
當(dāng)時(shí),,所以在,上為增函數(shù),在為減函數(shù).
(2)由(1)知,當(dāng)時(shí),在上為增函數(shù),所以,與題意矛盾;
當(dāng)時(shí),在上為增函數(shù),所以,與題意矛盾;
當(dāng)時(shí),在上為減函數(shù),在上為增函數(shù),所以,解得,與矛盾;
當(dāng)時(shí),在上為減函數(shù),所以,解得,滿足題意.
綜上可知.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖231所示.
圖231
將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另1天的日銷售量低于50個(gè)的概率;
(2)用X表示在未來3天里日銷售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望E(X)及方差D(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為,上頂點(diǎn)為.已知橢圓的離心率為,.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線:與橢圓交于,兩點(diǎn),且點(diǎn)在第二象限.與延長線交于點(diǎn),若的面積是面積的3倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系下,方程的圖形為如圖所示的“幸運(yùn)四葉草”,又稱為玫瑰線.
(1)當(dāng)玫瑰線的時(shí),求以極點(diǎn)為圓心的單位圓與玫瑰線的交點(diǎn)的極坐標(biāo);
(2)求曲線上的點(diǎn)M與玫瑰線上的點(diǎn)N距離的最小值及取得最小值時(shí)的點(diǎn)M、N的極坐標(biāo)(不必寫詳細(xì)解題過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 (a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B. 已知橢圓的離心率為,點(diǎn)A的坐標(biāo)為,且.
(I)求橢圓的方程;
(II)設(shè)直線l: 與橢圓在第一象限的交點(diǎn)為P,且l與直線AB交于點(diǎn)Q. 若 (O為原點(diǎn)) ,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有7道題,其中5道甲類題,2道乙類題,張同學(xué)從中任取2道題解答.試求:
(1)所取的兩道題都是甲類題的概率;
(2)所取的兩道題不是同一類題的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程為:,為參數(shù)點(diǎn)的極坐標(biāo)為,曲線C的極坐標(biāo)方程為.
Ⅰ試將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并求曲線C的焦點(diǎn)在直角坐標(biāo)系下的坐標(biāo);
Ⅱ設(shè)直線l與曲線C相交于兩點(diǎn)A,B,點(diǎn)M為AB的中點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市旅游局為了進(jìn)一步開發(fā)旅游資源,需要了解游客的情況,以便制定相應(yīng)的策略,在某月中隨機(jī)抽取甲、乙兩個(gè)景點(diǎn)各10天的游客數(shù),畫出莖葉圖如下:若景點(diǎn)甲中的數(shù)據(jù)的中位數(shù)是126,景點(diǎn)乙中的數(shù)據(jù)的平均數(shù)是124.
(1)求,的值;
(2)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長一段時(shí)期內(nèi)的樣本數(shù)據(jù)(視樣本頻率為概率).今從這段時(shí)期內(nèi)任取4天,記其中游客數(shù)不低于125人的天數(shù)為,求概率;
(3)現(xiàn)從上圖的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于115且不高于135人的天數(shù)為,求的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com