【題目】如圖所示,平面ABC⊥平面BCDE,BC∥DE, ,BE=CD=2,AB⊥BC,M,N分別為DE,AD中點.

(1)證明:平面MNC⊥平面BCDE;
(2)若EC⊥CD,點P為棱AD的三等分點(近A),平面PMC與平面ABC所成銳二面角的余弦值為 ,求棱AB的長度.

【答案】
(1)證明:連結(jié)BM,ON,

由題意四邊形BMDC是菱形,∴O是BD中點,

∵N是AD中點,∴ON∥AB,

∵AB⊥BC,平面ABC⊥平面BCDE,∴AB⊥平面BCDE,

∴ON⊥平面BCDE,

∵ON平面MNC,∴平面MNC⊥平面BCDE


(2)解:以C為原點,CE為x軸,CD為y軸,過C作平面BCDE的垂線為z軸,建立空間直角坐標系,

設A( ,﹣1,t),(t>0)由題意D(0,2,0),P( ,0, ),E(2 ,0,0),

D(0,2,0),M( ),B( ,0),C(0,0,0),

=( ,0, ), =( ), =( ,0), =( ),

設平面PMC的法向量 =(x,y,z),

,取x= ,得 =( ,﹣3,﹣ ),

設平面ABC的法向量 =(a,b,c),

,取a= ,得 =( ,0),

∵平面PMC與平面ABC所成銳二面角的余弦值為 ,

∴|cos< >|= = = ,解得t=3.

∴棱AB的長度為3.


【解析】(1)連結(jié)BM,ON,推導出ON∥AB,AB⊥平面BCDE,從而ON⊥平面BCDE,由此能證明平面MNC⊥平面BCDE.(2)以C為原點,CE為x軸,CD為y軸,過C作平面BCDE的垂線為z軸,建立空間直角坐標系,利用向量法能求出棱AB的長度.
【考點精析】解答此題的關(guān)鍵在于理解平面與平面垂直的判定的相關(guān)知識,掌握一個平面過另一個平面的垂線,則這兩個平面垂直.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 的圖像與的圖像關(guān)于軸對稱,函數(shù),若關(guān)于的不等式恒成立,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形, , , .

(1)求證:平面平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩地相距200千米,汽車從甲地勻速行駛到乙地,速度不得超過50千米/時.已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時)的平方成正比,比例系數(shù)為0.02;固定部分為50(元/時).
(1)把全程運輸成本y(元)表示為速度v(千米/時)的函數(shù),并指出定義域;
(2)用單調(diào)性定義證明(1)中函數(shù)的單調(diào)性,并指出汽車應以多大速度行駛可使全程運輸成本最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是(
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,2016年“雙十”天貓總成交金額突破1207億元.某購物網(wǎng)站為優(yōu)化營銷策略,對11月11日當天在該網(wǎng)站進行網(wǎng)購消費且消費金額不超過1000元的1000名網(wǎng)購者(其中有女性800名,男性200名)進行抽樣分析.采用根據(jù)性別分層抽樣的方法從這1000名網(wǎng)購者中抽取100名進行分析,得到下表:(消費金額單位:元)

女性消費情況:

消費金額

人數(shù)

5

10

15

47

男性消費情況:

消費金額

人數(shù)

2

3

10

2

(1)計算的值;在抽出的100名且消費金額在(單位:元)的網(wǎng)購者中隨機選出兩名發(fā)放網(wǎng)購紅包,求選出的兩名網(wǎng)購者恰好是一男一女的概率;

(2)若消費金額不低于600元的網(wǎng)購者為“網(wǎng)購達人”,低于600元的網(wǎng)購者為“非網(wǎng)購達人”,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,并回答能否在犯錯誤的概率不超過0.010的前提下認為“是否為‘網(wǎng)購達人’與性別有關(guān)?”

女性

男性

總計

網(wǎng)購達人

非網(wǎng)購達人

總計

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|+|x﹣a|.
(1)當a=2時,求不等式f(x)≥4的解集;
(2)不等式f(x)<4的解集中的整數(shù)有且僅有1,2,3,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, 底面, 是棱的中點,

.

(1)求證: 平面;

(2)如果是棱上一點,且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩條直線l1:y=a和l2:y= (其中a>0),若直線l1與函數(shù)y=|log4x|的圖象從左到右相交于點A,B,直線l2與函數(shù)y=|log4x|的圖象從左到右相交于點C,D.記線段AC和BD在x軸上的投影長度分別為 m,n.令f(a)=log4
(1)求f(a)的表達式;
(2)當a變化時,求出f(a)的最小值,并指出取得最小值時對應的a的值.

查看答案和解析>>

同步練習冊答案