【題目】已知橢圓: 的焦點的坐標為, 的坐標為,且經(jīng)過點, 軸.
(1)求橢圓的方程;
(2)設過的直線與橢圓交于兩不同點,在橢圓上是否存在一點,使四邊形為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.
【答案】(1);(2).
【解析】試題分析:(1)由的坐標為,且經(jīng)過點, 軸,得,解得的值即可得橢圓的方程;(2)假設存在符合條件的點M(x0,y0),當斜率不存在,推出矛盾不成立,設直線l的方程為,與橢圓的方程聯(lián)立得到根與系數(shù)關系,利用平行四邊形的對角線相互平分的性質(zhì)可得點M的坐標,代入橢圓方程解得即可.
試題解析:
(1),解得.所以橢圓的方程.
(2)假設存在點,
當斜率不存在,,,不成立;
當斜率存在,設為,設直線與聯(lián)立得.
.
,則的中點坐標為
AB與的中點重合,
得 ,
代入橢圓的方程得.解得.
存在符合條件的直線的方程為:.
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的首項為,公差為,等比數(shù)列的首項為,公比為.
(Ⅰ)若數(shù)列的前項和,求, 的值;
(Ⅱ)若, ,且.
(i)求的值;
(ii)對于數(shù)列和,滿足關系式, 為常數(shù),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是由個實數(shù)組成的行列的數(shù)表,滿足:每個數(shù)的絕對值不大于,且所有數(shù)的和為零,記為所有這樣的數(shù)表組成的集合,對于,記為的第行各數(shù)之和(剟 ),為的第列各數(shù)之和(剟),記為, , , , , , , 中的最小值.
()對如下數(shù)表,求的值.
()設數(shù)表形如:
求的最大值.
()給定正整數(shù),對于所有的,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017·鄭州第二次質(zhì)量預測)如圖,高為1的等腰梯形ABCD中,AM=CD=AB=1.現(xiàn)將△AMD沿MD折起,使平面AMD⊥平面MBCD,連接AB,AC.
(1)在AB邊上是否存在點P,使AD∥平面MPC?
(2)當點P為AB邊的中點時,求點B到平面MPC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“砥礪奮進的五年”,首都經(jīng)濟社會發(fā)展取得新成就.自2012年以來,北京城鄉(xiāng)居民收入穩(wěn)步增長.隨著擴大內(nèi)需,促進消費等政策的出臺,居民消費支出全面增長,消費結(jié)構持續(xù)優(yōu)化升級,城鄉(xiāng)居民人均可支配收入快速增長,人民生活品質(zhì)不斷提升.下圖是北京市2012-2016年城鄉(xiāng)居民人均可支配收入實際增速趨勢圖(例如2012年,北京城鎮(zhèn)居民收入實際增速為,農(nóng)村居民收入實際增速為).
(1)從2012-2016五年中任選一年,求城鎮(zhèn)居民收入實際增速大于的概率;
(2)從2012-2016五年中任選兩年,求至少有一年農(nóng)村和城鎮(zhèn)居民收入實際增速均超過的概率;
(3)由圖判斷,從哪年開始連續(xù)三年農(nóng)村居民收入實際增速方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD. E,M分別為線段AB,PD的中點.
(I)求證:PE⊥平面ABCD;
(II)求證:PB//平面ACM;
(III)在棱CD上是否存在點G,使平面GAM⊥平面ABCD,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, 平面, .過的平面交于點,交于點.
(l)求證: 平面;
(Ⅱ)求證: ;
(Ⅲ)記四棱錐的體積為,三棱柱的體積為.若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面是平行四邊形, , 平面底面,且是邊長為的等邊三角形, , 是 中點.
(1)求證:平面平面;
(2)證明: , 且與的面積相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com