【題目】已知拋物線(xiàn)的對(duì)稱(chēng)軸為坐標(biāo)軸,頂點(diǎn)是坐標(biāo)原點(diǎn),準(zhǔn)線(xiàn)方程為x=﹣1,直線(xiàn)l與拋物線(xiàn)相交于不同的A,B兩點(diǎn).
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)如果直線(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn),求 的值;
(3)如果 ,直線(xiàn)l是否過(guò)一定點(diǎn),若過(guò)一定點(diǎn),求出該定點(diǎn);若不過(guò)一定點(diǎn),試說(shuō)明理由.

【答案】
(1)

解:已知拋物線(xiàn)的對(duì)稱(chēng)軸為坐標(biāo)軸,頂點(diǎn)是坐標(biāo)原點(diǎn),準(zhǔn)線(xiàn)方程為x=﹣1,

所以 ,p=2.

∴拋物線(xiàn)的標(biāo)準(zhǔn)方程為y2=4x


(2)

解:設(shè)l:my=x﹣1,與y2=4x聯(lián)立,得y2﹣4my﹣4=0,

設(shè)A(x1,y1),B(x2,y2),∴y1+y2=4m,y1y2=﹣4,


(3)

解:假設(shè)直線(xiàn)l過(guò)定點(diǎn),設(shè)l:my=x+n,

,得y2﹣4my+4n=0,

設(shè)A(x1,y1),B(x2,y2),∴y1+y2=4m,y1y2=4n.

,解得n=﹣2,

∴l(xiāng):my=x﹣2過(guò)定點(diǎn)(2,0)


【解析】(1)由拋物線(xiàn)的準(zhǔn)線(xiàn)方程可知: ,p=2.即可求得拋物線(xiàn)方程;(2)設(shè)l:my=x﹣1,代入拋物線(xiàn)方程,利用韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得 的值;(3)設(shè)直線(xiàn)l方程,my=x+n,代入橢圓方程,利用韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得n的值,可知直線(xiàn)l過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M過(guò)C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設(shè)點(diǎn)P是直線(xiàn)3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線(xiàn),A,B為切點(diǎn),求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹(shù)棵數(shù)。乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中經(jīng)X表示。

1)如果X=8,求乙組同學(xué)植樹(shù)棵數(shù)的平均數(shù)和方差

2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹(shù)總棵數(shù)為19的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心坐標(biāo)且與線(xiàn)y=3x+4相切,

(1)求圓C的方程;

(2)設(shè)直線(xiàn)與圓C交于M,N兩點(diǎn),那么以MN為直徑的圓能否經(jīng)過(guò)原點(diǎn),若能,請(qǐng)求出直線(xiàn)MN的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機(jī)選擇3月1日至3月15日中的某一天到達(dá)該市,并停留2天.

(Ⅰ)求此人到達(dá)當(dāng)日空氣質(zhì)量?jī)?yōu)良的概率;

(Ⅱ)求此人在該市停留期間只有1天空氣重度污染的概率;

(Ⅲ)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x﹣m|﹣1.
(1)若不等式f(x)≤2的解集為{x|﹣1≤x≤5},求實(shí)數(shù)m的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥t﹣2對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,A1 , B1分別是邊BA,CB的中點(diǎn),A2 , B2分別是線(xiàn)段A1A,B1B的中點(diǎn),…,An , Bn分別是線(xiàn)段 的中點(diǎn),設(shè)數(shù)列{an},{bn}滿(mǎn)足:向量 ,有下列四個(gè)命題,其中假命題是(
A.數(shù)列{an}是單調(diào)遞增數(shù)列,數(shù)列{bn}是單調(diào)遞減數(shù)列
B.數(shù)列{an+bn}是等比數(shù)列
C.數(shù)列 有最小值,無(wú)最大值
D.若△ABC中,C=90°,CA=CB,則 最小時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

當(dāng)時(shí),若在區(qū)間上的最小值為,求a的取值范圍;

,,且恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l經(jīng)過(guò)拋物線(xiàn)y2=6x的焦點(diǎn)F,且與拋物線(xiàn)相交于A,B兩點(diǎn).

(1)若直線(xiàn)l的傾斜角為60°,求|AB|的值;

(2)|AB|=9,求線(xiàn)段AB的中點(diǎn)M到準(zhǔn)線(xiàn)的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案