【題目】已知函數(shù),其中

當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

當(dāng)時(shí),若在區(qū)間上的最小值為,求a的取值范圍;

,且,恒成立,求a的取值范圍.

【答案】(I);(II);(III).

【解析】

求出,的值可得切點(diǎn)坐標(biāo),求出的值,可得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;確定函數(shù)的定義域,求導(dǎo)函數(shù),分類討論,利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用單調(diào)性求得函數(shù)在區(qū)間上的最小值為,即可求的取值范圍;設(shè),則,對(duì)任意,,且恒成立,等價(jià)于上單調(diào)遞增,由此可求的取值范圍.

當(dāng)時(shí),,

因?yàn)?/span>,所以切線方程為

函數(shù)的定義域?yàn)?/span>

當(dāng)時(shí),,

,即,所以

當(dāng),即時(shí),上單調(diào)遞增,

所以上的最小值是;

當(dāng)時(shí),上的最小值是,不合題意;

當(dāng)時(shí),上單調(diào)遞減,

所以上的最小值是,不合題意

綜上可得

設(shè),則,對(duì)任意,,,且恒成立,等價(jià)于上單調(diào)遞增.

,

當(dāng)時(shí),,此時(shí)單調(diào)遞增;

當(dāng)時(shí),只需恒成立,因?yàn)?/span>,只要,則需要

對(duì)于函數(shù),過定點(diǎn),對(duì)稱軸,只需,即

綜上可得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:mx2+3my2=1(m>0)的長(zhǎng)軸長(zhǎng)為 ,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程和離心率.
(2)設(shè)點(diǎn)A(3,0),動(dòng)點(diǎn)B在y軸上,動(dòng)點(diǎn)P在橢圓C上,且點(diǎn)P在y軸的右側(cè).若BA=BP,求四邊形OPAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的對(duì)稱軸為坐標(biāo)軸,頂點(diǎn)是坐標(biāo)原點(diǎn),準(zhǔn)線方程為x=﹣1,直線l與拋物線相交于不同的A,B兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)如果直線l過拋物線的焦點(diǎn),求 的值;
(3)如果 ,直線l是否過一定點(diǎn),若過一定點(diǎn),求出該定點(diǎn);若不過一定點(diǎn),試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若是函數(shù)的唯一極值點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,且過點(diǎn) .若點(diǎn)M(x0 , y0)在橢圓C上,則點(diǎn) 稱為點(diǎn)M的一個(gè)“橢點(diǎn)”.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn),且A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),試求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知P是直線上的一個(gè)動(dòng)點(diǎn),圓Q的方程為:設(shè)以線段PQ為直徑的圓E與圓Q交于C,D兩點(diǎn).

證明:PCPD均與圓Q相切;

當(dāng)時(shí),求點(diǎn)P的坐標(biāo);

求線段CD長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比不等于1的等比數(shù)列{an},滿足:a3=3,S3=9,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2 , 若cn= , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且cos =
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin cos ﹣sin )+ ,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-4x=0.若直線y=k(x+1)上存在一點(diǎn)P,使過P所作的圓的兩條切線相互垂直,則實(shí)數(shù)k的取值范圍是(  )

A. (-∞,-2) B. [-2,2]

C. [-] D. (-∞,-2]∪[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案