【題目】已知正方體的棱長為2,為體對角線上的一點,且,現(xiàn)有以下判斷:①;②若平面,則;③周長的最小值是;④若為鈍角三角形,則的取值范圍為,其中正確判斷的序號為______.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為其右頂點為,下頂點為,定點,的面積為過點作與軸不重合的直線交橢圓于兩點,直線分別與軸交于兩點.
(1)求橢圓的方程;
(2)試探究的橫坐標(biāo)的乘積是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,
(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教師為了分析所任教班級某次考試的成績,將全班同學(xué)的成績作成統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[50,60) | 3 | 0.06 |
[60,70) | m | 0.10 |
[70,80) | 13 | n |
[80,90) | p | q |
[90,100] | 9 | 0.18 |
總計 | t | 1 |
(1)求表中t,q及圖中a的值;
(2)該教師從這次考試成績低于70分的學(xué)生中隨機抽取3人進(jìn)行談話,設(shè)X表示所抽取學(xué)生中成績低于60分的人數(shù),求隨機變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若時,討論在區(qū)間上零點個數(shù);
(2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改革”引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人進(jìn)行調(diào)查,就“是否取消英語聽力”問題進(jìn)行了問卷調(diào)查統(tǒng)計,結(jié)果如下表:
態(tài)度 調(diào)查人群 | 應(yīng)該取消 | 應(yīng)該保留 | 無所謂 |
在校學(xué)生 | 2100人 | 120人 | 人 |
社會人士 | 600人 | 人 | 人 |
(1)已知在全體樣本中隨機抽取人,抽到持“應(yīng)該保留”態(tài)度的人的概率為,現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取人,再平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,且,,分別為,的中點.
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓C: (a>b>0)的離心率為,右焦點F到右準(zhǔn)線的距離為3.
(1)求橢圓C的方程;
(2)過點F作直線l (不與x 軸重合)和橢圓C交于M, N兩點,設(shè)點.
①若的面積為,求直線l方程;
②過點M作與)軸垂直的直線l"和直線NA交于點P,求證:點P在一條定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com