【題目】設集合A={x|a+1≤x≤2a+1},B={x|4≤x≤5}.
(I)若a=2,求A∪B,R(A∪B);
(II)若A∩B=B,求實數(shù)a的取值范圍.

【答案】解:(Ⅰ)a=2時,集合A={x|a+1≤x≤2a+1}={x|3≤x≤5},

集合B={x|4≤x≤5},∴A∪B={x|3≤x≤5};

R(A∪B)={x|x<3,或x>5};

(Ⅱ)由A∩B=B,得BA;

解得 ;

綜上,實數(shù)a的取值范圍是{a|2≤a≤3}


【解析】(1)當a=2時,解出集合A,B,根據(jù)集合的交、并、補運算即可,(2)當A∩B=B時,可得出BA,有子集的關系列出不等式組,即可得到實數(shù)a的取值范圍.
【考點精析】認真審題,首先需要了解交、并、補集的混合運算(求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】過不重合的A(m2+2,m2﹣3),B(3﹣m﹣m2 , 2m)兩點的直線l傾斜角為45°,則m的取值為(
A.m=﹣1
B.m=﹣2
C.m=﹣1或2
D.m=l或m=﹣2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),Sn表示數(shù)列{an}的前n項的和,且
(1)求數(shù)列{an}的通項公式;
(2)設 ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C: =1(a>0,b>0)的離心率為 ,實軸長為2,直線l:x﹣y+m=0與雙曲線C交于不同的兩點A,B,
(1)求雙曲線C的方程;
(2)若線段AB的中點在圓x2+y2=5上,求m的值;
(3)若線段AB的長度為4 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=f(x)是定義域為R的奇函數(shù),當x≥0時,f(x)=x2﹣2x,函數(shù)f(x)與函數(shù)y=1的交點個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|a≤x≤a+3},B={x|x<﹣1,或x>5}.
(Ⅰ)當a=3時,求(RA)∩B;
(Ⅱ)若A∩B=,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,AB=5,cos∠ABC=
(1)若BC=4,求△ABC的面積SABC;
(2)若D是邊AC的中點,且BD= ,求邊BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l1經(jīng)過點A(m,1),B(-3,4),直線l2經(jīng)過點C(1,m),D(-1,m+1),當l1∥l2或l1⊥l2時,分別求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直線mx+ny+2=0(m>0,n>0)截得圓(x+3)2+(y+1)2=1的弦長為2,則 的最小值為(
A.4
B.12
C.16
D.6

查看答案和解析>>

同步練習冊答案