【題目】函數(shù)y=f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x,函數(shù)f(x)與函數(shù)y=1的交點(diǎn)個(gè)數(shù)為( )
A.0
B.1
C.2
D.3

【答案】C
【解析】解:∵函數(shù)y=f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x,

根據(jù)奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),畫(huà)出函數(shù)f(x)的圖象如下所示:

由圖可得:函數(shù)f(x)與函數(shù)y=1的交點(diǎn)個(gè)數(shù)為2個(gè),

所以答案是:C

【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式組 所表示的平面區(qū)域?yàn)镈n , 記Dn內(nèi)的整點(diǎn)個(gè)數(shù)為an(n∈N*).(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,若對(duì)于一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =2(cosωx,cosωx), =(cosωx, sinωx)(其中0<ω<1),函數(shù)f(x)=
(1)若直線(xiàn)x= 是函數(shù)f(x)圖象的一條對(duì)稱(chēng)軸,先列表再作出函數(shù)f(x)在區(qū)間[﹣π,π]上的圖象.
(2)求函數(shù)y=f(x),x∈[﹣π,π]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1、F2是橢圓 =1的焦點(diǎn),點(diǎn)P在橢圓上,若∠F1PF2= ,則△F1PF2的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有4個(gè)編號(hào)依次為1、2、3、4的球,這4個(gè)球除號(hào)碼外完全相同,先從盒子中隨機(jī)取一個(gè)球,該球的編號(hào)為X,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為Y
(1)列出所有可能結(jié)果.
(2)求事件A=“取出球的號(hào)碼之和小于4”的概率.
(3)求事件B=“編號(hào)X<Y”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|a+1≤x≤2a+1},B={x|4≤x≤5}.
(I)若a=2,求A∪B,R(A∪B);
(II)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店購(gòu)進(jìn)某種水果的成本為20元/kg,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來(lái)30天的銷(xiāo)售單價(jià)P(元/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式為 ,銷(xiāo)售量Q(kg)與時(shí)間t(天)的函數(shù)關(guān)系式為Q=﹣2t+120.
(Ⅰ)該水果店哪一天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
(Ⅱ)為響應(yīng)政府“精準(zhǔn)扶貧”號(hào)召,該店決定每銷(xiāo)售1kg水果就捐贈(zèng)n(n∈N)元給“精準(zhǔn)扶貧”對(duì)象.欲使捐贈(zèng)后不虧損,且利潤(rùn)隨時(shí)間t(t∈N)的增大而增大,求捐贈(zèng)額n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知焦點(diǎn)在x軸上,中心在坐標(biāo)原點(diǎn)的橢圓C的離心率為 ,且過(guò)點(diǎn)( ,1). (Ⅰ)求橢圓C的方程;
(Ⅱ)直線(xiàn)l分別切橢圓C與圓M:x2+y2=R2(其中3<R<5)于A、B兩點(diǎn),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,已知
(Ⅰ)求sinC的值;
(Ⅱ)當(dāng)a=2,2sinA=sinC時(shí),求b及c的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案