【題目】2017年是某市大力推進居民生活垃圾分類的關鍵一年,有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識”的網(wǎng)絡問卷調(diào)查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調(diào)查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖所示:
(Ⅰ)估計該組數(shù)據(jù)的中位數(shù)、眾數(shù);
(Ⅱ)由頻率分布直方圖可以認為,此次問卷調(diào)查的得分Z服從正態(tài)分布N(μ,210),μ近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P(50.5<Z<94);
(Ⅲ)在(Ⅱ)的條件下,有關部門為此次參加問卷調(diào)査的市民制定如下獎勵方案:
(i)得分不低于μ可獲贈2次隨機話費,得分低于μ則只有1次;
(ii)每次贈送的隨機話費和對應概率如下:
贈送話費(單元:元) | 10 | 20 |
概率 |
現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加.問卷調(diào)查獲贈的話費,求X的分布列和數(shù)學期望.
附: ,
若ZN(μ,σ2),則P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.
【答案】(1) 65,65 (2) 0.8185(3)
【解析】試題分析:(Ⅰ) 由(0.0025 +0.0050+0.0100+0.0150 + a + 0. 0225 + 0. 0250)×10 =1,得a =0.0200,設中位數(shù)為,由(0.0025 + 0. 0150 + ) ×10+(x-60) ×0.0250 = 0.5000,解得x = 65, 由頻率分布直方圖可知眾數(shù)為65.
(Ⅱ) 從這1000人問卷調(diào)查得到的平均值μ為
μ= 35×0.025 + 45×0.15 +55×0.20+65×0.25+75×0.225+85×0.1+ 95×0.05=65,因為由于得分Z服從正態(tài)分布N(65,210),所以
P(50.5<Z<94)=P(60-14.5<Z<60 + 14.5×2)= 即得解;
(Ⅲ) 設得分不低于μ分的概率為p,則P(Z≥μ)= ,由題意得各概率即可得分布列和期望.
試題解析:
(Ⅰ)由(0.0025 +0.0050+0.0100+0.0150 + a + 0. 0225 + 0. 0250)×10 =1,得a =0.0200,
設中位數(shù)為,由(0.0025 + 0. 0150 + ) ×10+(x-60) ×0.0250 = 0.5000,解得x = 65,
由頻率分布直方圖可知眾數(shù)為65.
(Ⅱ)從這1000人問卷調(diào)查得到的平均值μ為
μ= 35×0.025 + 45×0.15 +55×0.20+65×0.25+75×0.225+85×0.1+ 95×0.05
=0.875 + 6.75+11 +16.25+ 16. 875 + 8.5 +4.75 = 65
因為由于得分Z服從正態(tài)分布N(65,210),
所以P(50.5<Z<94)=P(60-14.5<Z<60 + 14.5×2)= =0.8185.
(Ⅲ)設得分不低于μ分的概率為p,則P(Z≥μ)= ,
X的取值為10,20,30,40,
P(X=10) =,
P(X=30) =,.
所以X的分布列為:
X | 10 | 20 | 30 | 40 |
所以.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的離心率為, 軸被曲線截得的線段長等于的長半軸長。
(1)求, 的方程;
(2)設與軸的交點為M,過坐標原點O的直線與相交于點A,B,直線MA,MB分別與相交與D,E.
①證明: ;
②記△MAB,△MDE的面積分別是.問:是否存在直線,使得=?請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓,圓.
(1)若過點的直線被圓截得的弦長為,求直線的方程;
(2)設動圓同時平分圓的周長、圓的周長.
①證明:動圓圓心在一條定直線上運動;
②動圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓內(nèi)一定點,動圓過點且與圓內(nèi)切.記動圓圓心的軌跡為.
(Ⅰ)求軌跡方程;
(II)過點的動直線l交軌跡于M,N兩點,試問:在坐標平面上是否存在一個定點Q,使得以線段MN為直徑的圓恒過點Q?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求||;
(2)已知點D是AB上一點,滿足=λ,點E是邊CB上一點,滿足=λ.
①當λ=時,求;
②是否存在非零實數(shù)λ,使得⊥?若存在,求出的λ值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列五個判斷:
①某校高二一班和高二二班的人數(shù)分別是m,n,某次測試數(shù)學平均分分別為a,b,則這兩個班的數(shù)學平均分為;
②10名工人生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
③設m,命題“若a>b,則”的逆否命題為假命題;
④命題p“方程表示橢圓”,命題q“的取值范圍為1<<4”,則p是q的充要條件;
⑤線性相關系數(shù)r越大,兩個變量的線性相關性越強;反之,線性相關性越弱;
其中正確的個數(shù)有( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大慶實驗中學在高二年級舉辦線上數(shù)學知識競賽,在已報名的400名學生中,根據(jù)文理學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)估算一下本次參加考試的同學成績的中位數(shù)和眾數(shù);
(2)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半理科生的分數(shù)不小于70,且樣本中分數(shù)不小于70的文理科生人數(shù)相等.試估計總體中理科生和文科生人數(shù)的比例.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com