【題目】已知函數(shù)f(x)=lnx,g(x)= ﹣ (x為實常數(shù)).
(1)當a=1時,求函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2f(x)=g(x)(其中e=2.71828…)在區(qū)間[ ]上有解,求實數(shù)a的取值范圍.
【答案】
(1)解:當a=1時,函數(shù)φ(x)=f(x)﹣g(x)=lnx﹣ + ,
∴φ′(x)= = ;
x∈[4,+∞),∴φ′(x)>0
∴函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上單調遞增
∴x=4時,φ(x)min=2ln2﹣
(2)解:方程e2f(x)=g(x)可化為x2= ﹣ ,∴a= ﹣x3,
設y= ﹣x3,則y′= ﹣3x2,
∵x∈[ ]
∴函數(shù)在[ ]上單調遞增,在[ ,1]上單調遞減
∵x= 時,y= ;x= 時,y= ;x=1時,y= ,
∴y∈[ ]
∴a∈[ ]
【解析】(1)求導數(shù),求得函數(shù)的單調性,即可求函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;(2)化簡方程,分離參數(shù),再構建新函數(shù),確定函數(shù)的單調性,求出函數(shù)的值域,即可求實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】若 、 是兩個相交平面,則在下列命題中,真命題的序號為( )
①若直線 ,則在平面 內一定不存在與直線 平行的直線.
②若直線 ,則在平面 內一定存在無數(shù)條直線與直線 垂直.
③若直線 ,則在平面 內不一定存在與直線 垂直的直線.
④若直線 ,則在平面 內一定存在與直線 垂直的直線.
A.①③
B.②③
C.②④
D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為 ,離心率為 ,經(jīng)過點 且傾斜角為 的直線 交橢圓于 兩點.
(1)若 的周長為16,求直線 的方程;
(2)若 ,求橢圓 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義域為(0,+∞)的單調函數(shù),若對任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實數(shù)a的取值范圍是( )
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x+1|.
(1)解關于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,試求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形 中, 分別為 的中點,現(xiàn)將 沿 折起,得四棱錐
(1)求證: 平面 ;
(2)若平面 平面 ,求四面體 的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)y=f(x)的導函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間 內單調遞增;
②函數(shù)y=f(x)在區(qū)間 內單調遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內單調遞增;
④當x=2時,函數(shù)y=f(x)有極小值;
⑤當x= 時,函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A.①②
B.②③
C.③④⑤
D.③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com