【題目】已知函數(shù)f(x)=|x|+|x+1|.
(1)解關(guān)于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,試求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:由|x|+|x+1|>3,
得: 或 或 ,
解得:x>1或x<﹣2,
故不等式的解集是{x|x>1或x<﹣2}
(2)解:若x∈R,使得m2+3m+2f(x)≥0成立,
而f(x)= ,故f(x)的最小值是1,
故只需m2+3m+2≥0即可,
解得:m≥﹣1或m≤﹣2
【解析】(1)通過(guò)討論x的范圍,得到關(guān)于x的不等式組,解出即可;(2)求出f(x)的最小值,問(wèn)題轉(zhuǎn)化為m2+3m+2≥0,解出即可.
【考點(diǎn)精析】關(guān)于本題考查的絕對(duì)值不等式的解法,需要了解含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確命題的個(gè)數(shù)是 ①對(duì)于命題p:x∈R,使得x2+x+1<0,則p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③設(shè)ξ~B(n,p),已知Eξ=3,Dξ= ,則n與p值分別為12,
④m=3是直線(xiàn)(m+3)x+my﹣2=0與直線(xiàn)mx﹣6y+5=0互相垂直的充要條件.( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)E:的焦點(diǎn)為F,過(guò)點(diǎn)F的直線(xiàn)l與E交于A,C兩點(diǎn)
(1)分別過(guò)A,C兩點(diǎn)作拋物線(xiàn)E的切線(xiàn),求證:拋物線(xiàn)E在A、C兩點(diǎn)處的切線(xiàn)互相垂直;
(2)過(guò)點(diǎn)F作直線(xiàn)l的垂線(xiàn)與拋物線(xiàn)E交于B,D兩點(diǎn),求四邊形ABCD的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線(xiàn)圖.
根據(jù)該折線(xiàn)圖,下列結(jié)論錯(cuò)誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)幾何體的三視圖如圖所示.
(1)求此幾何體的表面積;
(2)如果點(diǎn)在正視圖中所示位置:為所在線(xiàn)段中點(diǎn),為頂點(diǎn),求在幾何體表面上,從點(diǎn)到點(diǎn)的最短路徑的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x,函數(shù)f(x)的圖象在x=0處的切線(xiàn)方程是;函數(shù)f(x)在區(qū)間[0,2]內(nèi)的值域是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xex﹣a(x﹣1)(a∈R)
(1)若函數(shù)f(x)在x=0處有極值,求a的值及f(x)的單調(diào)區(qū)間
(2)若存在實(shí)數(shù)x0∈(0, ),使得f(x0)<0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到一組銷(xiāo)售數(shù)據(jù)(xi , yi)(i=1,2,…,6),如表所示:
試銷(xiāo)單價(jià)x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷(xiāo)量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知 =80.
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線(xiàn)性相關(guān)關(guān)系,求產(chǎn)品銷(xiāo)量y(件)關(guān)于試銷(xiāo)單價(jià)x(元)的線(xiàn)性回歸方程 ;可供選擇的數(shù)據(jù): ,
(Ⅲ)用 表示用(Ⅱ)中所求的線(xiàn)性回歸方程得到的與xi對(duì)應(yīng)的產(chǎn)品銷(xiāo)量的估計(jì)值.當(dāng)銷(xiāo)售數(shù)據(jù)(xi , yi)對(duì)應(yīng)的殘差的絕對(duì)值 時(shí),則將銷(xiāo)售數(shù)據(jù)(xi , yi)稱(chēng)為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷(xiāo)售數(shù)據(jù)中任取3個(gè),求“好數(shù)據(jù)”個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望E(ξ).
(參考公式:線(xiàn)性回歸方程中 , 的最小二乘估計(jì)分別為 , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣一中計(jì)劃把一塊邊長(zhǎng)為20米的等邊三角形ABC的邊角地辟為植物新品種實(shí)驗(yàn)基地,圖中DE需把基地分成面積相等的兩部分,D在A(yíng)B上,E在A(yíng)C上.
(1)設(shè)AD=x(x≥10),ED=y,試用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉輸水管道的位置,為了節(jié)約,則希望它最短,DE的位置應(yīng)該在哪里?如果DE是參觀(guān)線(xiàn)路,則希望它最長(zhǎng),DE的位置又應(yīng)該在哪里?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com