(2007•浦東新區(qū)二模)據(jù)有關資料統(tǒng)計,通過環(huán)境整治,某湖泊污染區(qū)域S(km2)與時間t(年)可近似看作指數(shù)函數(shù)關系,已知近兩年污染區(qū)域由0.16km2降至0.04km2,則污染區(qū)域降至0.01km2還需
2
2
年.
分析:由于某湖泊污染區(qū)域S(km2)與時間t(年)可近似看作指數(shù)函數(shù)關系,那么重點是求指數(shù)的底,根據(jù)兩年污染區(qū)域由0.16km2降至0.04km2,可求底數(shù),從而可求污染區(qū)域降至0.01km2還需的年數(shù)
解答:解:由題意,設相隔為t年的兩個年份湖泊污染區(qū)域為S1和S2
那么按照假設S1=S2at
兩年前S1=0.16,S2=0.04,t=2,那么求出a=2
假設需要t年能降至0.01,則S1=0.04,S2=0.01,求出t=2
故答案為2.
點評:本題的考點是函數(shù)模型的選擇與應用,主要考查指數(shù)函數(shù)模型,關鍵是將實際問題轉(zhuǎn)化為數(shù)學問題,從而得解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•浦東新區(qū)二模)據(jù)預測,某旅游景區(qū)游客人數(shù)在500至1300人之間,游客人數(shù)x(人)與游客的消費總額y(元)之間近似地滿足關系:y=-x2+2400x-1000000.
(Ⅰ)若該景區(qū)游客消費總額不低于400000元時,求景區(qū)游客人數(shù)的范圍.
(Ⅱ)當景區(qū)游客的人數(shù)為多少人時,游客的人均消費最高?并求游客的人均最高消費額.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•浦東新區(qū)一模)若α∈{-1,-3,
1
3
,2}
,則使函數(shù)y=xα的定義域為R且在(-∞,0)上單調(diào)遞增的α值為
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)設函數(shù)f(x)=log2(1-2x),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•浦東新區(qū)二模)x∈R,“x<2”是“|x-1|<1”的( 。

查看答案和解析>>

同步練習冊答案