【題目】設(shè)f(x)=log 為奇函數(shù),a為常數(shù),
(1)求a的值;
(2)證明f(x)在區(qū)間(1,+∞)上單調(diào)遞增;
(3)若x∈[3,4],不等式f(x)>( )x+m恒成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:∵f(x)是奇函數(shù),
∴f(﹣x)=﹣f(x),
∴ ,
∴ ,
即(1+ax)(1﹣ax)=﹣(x+1)(x﹣1),
即1﹣a2x2=1﹣x2,
即a2=1,
∴a=﹣1或a=1,
若a=1,則 = 不滿足條件,舍去,
故a=﹣1
(2)證明:∵ ,(x>1),
設(shè)1<x1<x2,則△x=x2﹣x1>0
∵ ,
∴
∴△y=f(x2)﹣f(x1)>0,f(x)在區(qū)間(1,+∞)上單調(diào)遞增
(3)解:設(shè) ,
則g(x)在[3,4]上是增函數(shù)
∴g(x)>m對(duì)x∈[3,4]恒成立,
∴m<g(3)=﹣
【解析】(1)根據(jù)對(duì)數(shù)的基本運(yùn)算以及函數(shù)奇偶性的性質(zhì)建立條件關(guān)系即可求a的值;(2)根據(jù)函數(shù)單調(diào)性的定義即可證明f(x)在區(qū)間(1,+∞)上單調(diào)遞增;(3)結(jié)合函數(shù)的單調(diào)性,利用參數(shù)分離法即可求出m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是等差數(shù)列的前項(xiàng)和,已知, , .
(1)求;
(2)若數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線(為參數(shù),),其中,在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.
(Ⅰ)求與交點(diǎn)的直角坐標(biāo)系;
(Ⅱ)若與相交于點(diǎn),與相交于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程表示一個(gè)圓.
(1)求實(shí)數(shù)的取值范圍;
(2)求該圓半徑的取值范圍;
(3)求該圓心的縱坐標(biāo)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的圓心在直線l:y=2x上,且經(jīng)過(guò)點(diǎn)A(﹣3,﹣1),B(4,6).
(Ⅰ)求圓C的方程;
(Ⅱ)點(diǎn)P是直線l上橫坐標(biāo)為﹣4的點(diǎn),過(guò)點(diǎn)P作圓C的切線,求切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度. 藥物在人體內(nèi)發(fā)揮治療作用時(shí),該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示:
根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說(shuō)法中,不正確的個(gè)數(shù)是
①首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
②每次服用該藥物1單位,兩次服藥間隔小于2小時(shí),一定會(huì)產(chǎn)生藥物中毒
③每間隔5.5小時(shí)服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
④首次服用該藥物1單位3小時(shí)后,再次服用該藥物1單位,不會(huì)發(fā)生藥物中毒
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ,曲線上的動(dòng)點(diǎn)滿足:
.
(1)求曲線的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),第一象限的點(diǎn)分別在和上, ,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c,
(1)若函數(shù)f(x)是偶函數(shù),求實(shí)數(shù)b的值
(2)若函數(shù)f(x)在區(qū)間[﹣1,3]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)閇7,15),設(shè)f(2x+1)的定義域?yàn)锳,B={x|x<a或x>a+1},若A∪B=R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com