【題目】某企業(yè)參加項(xiàng)目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實(shí)的需要,從項(xiàng)目中調(diào)出人參與項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤萬元(),項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項(xiàng)目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項(xiàng)目從事售后服務(wù)工作?
(2)在(1)的條件下,當(dāng)從項(xiàng)目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時(shí),才能使得項(xiàng)目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)根據(jù)題意,列出不等式,求解即可;
(2)求出的范圍,得出不等式,整理可得恒成立,根據(jù)的范圍,可知函數(shù)在定義域內(nèi)為減函數(shù),當(dāng)時(shí),函數(shù)取得最小值.
設(shè)調(diào)出人參加項(xiàng)目從事售后服務(wù)工作
(1)由題意得:,
即,又,所以.即最多調(diào)整500名員工從事第三產(chǎn)業(yè).
(2)由題知,,
從事第三產(chǎn)業(yè)的員工創(chuàng)造的年總利潤為萬元,
從事原來產(chǎn)業(yè)的員工的年總利潤為萬元,
則,
所以,
所以,
即恒成立,
因?yàn)?/span>,
所以,
所以,
又,所以,
即的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),).
(Ⅰ)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(Ⅱ)求證:當(dāng)時(shí),在上是增函數(shù);
(Ⅲ)若對任意的(1,2),總存在,使不等式成立,求實(shí)數(shù)的取范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若直線是曲線的一條切線,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),若函數(shù)在上有兩個(gè)零點(diǎn).求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);
(2)由直方圖可認(rèn)為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計(jì)有多少人?
(3)如果用抽取的考生成績的情況來估計(jì)全市考生的成績情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001)
附:①;
②,則;
③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,其右焦點(diǎn)與拋物線的焦點(diǎn)重合,過且垂直于拋物線對稱軸的直線與橢圓交于、兩點(diǎn),與拋物線交于、兩點(diǎn).
(1)求橢圓的方程;
(2)若直線l與(1)中橢圓相交于,兩點(diǎn), 直線, ,的斜率分別為,, (其中),且,,成等比數(shù)列;設(shè)的面積為, 以、為直徑的圓的面積分別為, , 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個(gè)年級共336名學(xué)生同時(shí)參與了“我運(yùn)動(dòng),我健康,我快樂”的跳繩、踢毽等系列體育健身活動(dòng).為了了解學(xué)生的運(yùn)動(dòng)狀況,采用分層抽樣的方法從高一、高二兩個(gè)年級的學(xué)生中分別抽取7名和5名學(xué)生進(jìn)行測試.下表是高二年級的5名學(xué)生的測試數(shù)據(jù)(單位:個(gè)/分鐘):
(1)求高一、高二兩個(gè)年級各有多少人?
(2)設(shè)某學(xué)生跳繩個(gè)/分鐘,踢毽個(gè)/分鐘.當(dāng),且時(shí),稱該學(xué)生為“運(yùn)動(dòng)達(dá)人”.
①從高二年級的學(xué)生中任選一人,試估計(jì)該學(xué)生為“運(yùn)動(dòng)達(dá)人”的概率;
②從高二年級抽出的上述5名學(xué)生中,隨機(jī)抽取3人,求抽取的3名學(xué)生中為“運(yùn)動(dòng)達(dá)人”的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,且,圓,點(diǎn),是圓上的動(dòng)點(diǎn),線段的垂直平分線交直線于點(diǎn),點(diǎn)的軌跡為曲線.
(1)討論曲線的形狀,并求其方程;
(2)若,且面積的最大值為,直線過點(diǎn)且不垂直于坐標(biāo)軸,與曲線交于,點(diǎn)關(guān)于軸的對稱點(diǎn)為.求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是1990年-2017年我國勞動(dòng)年齡(15-64歲)人口數(shù)量及其占總?cè)丝诒戎厍闆r:
根據(jù)圖表信息,下列統(tǒng)計(jì)結(jié)論不正確的是( 。
A. 2000年我國勞動(dòng)年齡人口數(shù)量及其占總?cè)丝诒戎氐哪暝龇鶠樽畲?/span>
B. 2010年后我國人口數(shù)量開始呈現(xiàn)負(fù)增長態(tài)勢
C. 2013年我國勞動(dòng)年齡人口數(shù)量達(dá)到峰值
D. 我國勞動(dòng)年齡人口占總?cè)丝诒戎貥O差超過
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com