(本題滿分10分)
已知橢圓的方程為,稱圓心在坐標(biāo)原點,半徑為的圓為橢圓的“伴隨圓”,橢圓的短軸長為2,離心率為
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)若直線與橢圓交于兩點,與其“伴隨圓”交于兩點,當(dāng) 時,求△面積的最大值.
解:(Ⅰ)由題意得,
,橢圓的方程為,…………………………3分  
“伴隨圓”的方程為.…………………………………………………4分   
(Ⅱ)①當(dāng)軸時,由,得 .
②當(dāng)軸不垂直時,由,得圓心的距離為
設(shè)直線的方程為則由,得,
設(shè),由
.……………………………………6分
當(dāng)時,
==
=
當(dāng)且僅當(dāng),即時等號成立,此時.
當(dāng)時,,綜上所述:
此時△的面積取最大值.………………10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點P及橢圓,Q是橢圓上的動點,則的最大值為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的兩焦點是,,且該橢圓過點,則該橢圓的標(biāo)準(zhǔn)方程是_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓與曲線有公共點,則橢圓的離心率的取值范圍是_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等軸雙曲線C與橢圓有公共的焦點,則雙曲線C的方程為____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知過點D(0,-2)作拋物線C1=2py(p>0)的切線l,切點A在第二象限.
(Ⅰ)求點A的縱坐標(biāo);
(Ⅱ)若離心率為的橢圓(a>b>0)恰好經(jīng)過點A,設(shè)直線l交橢圓的另一點為B,記直線l,OA,OB的斜率分別為k,k1,k2,若k1+2k2=4k,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示, 底面直徑為的圓柱被與底面成的平面所截,其截口是一個橢圓,則這個橢圓的離心率為               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點為F,橢圓C的離心率為是它們的一個交點,且
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知,點A,B為橢圓上的兩點,且弦AB不平行于對稱軸,的中點,試探究是否為定值,若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的方程為:,其焦點在軸上,離心率.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點滿足,其中M,N是橢圓上的點,直線OM與ON的斜率之積為,求證:為定值.
(3)在(2)的條件下,問:是否存在兩個定點,使得為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案