精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=x2+ax,若f(f(x))的最小值與f(x)的最小值相等,則a的取值范圍是

【答案】{aa≥2或a≤0}
【解析】解:由于f(x)=x2+ax,x∈R.則當x=﹣ 時,f(x)min=﹣ , 又函數y=f(f(x))的最小值與函數y=f(x)的最小值相等,
則函數y必須要能夠取到最小值,即﹣ ≤﹣ ,
得到a≤0或a≥2,
所以答案是:{a|a≥2或a≤0}.
【考點精析】通過靈活運用函數的最值及其幾何意義和二次函數的性質,掌握利用二次函數的性質(配方法)求函數的最大(小)值;利用圖象求函數的最大(小)值;利用函數單調性的判斷函數的最大(小)值;當時,拋物線開口向上,函數在上遞減,在上遞增;當時,拋物線開口向下,函數在上遞增,在上遞減即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數有4個零點,其圖象如下圖,和圖象吻合的函數解析式是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在矩形中, , 的中點,將三角形沿翻折到圖②的位置,使得平面 平面.

(1)在線段上確定點,使得平面,并證明;

(2)求所在平面構成的銳二面角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A(﹣ ,0),B( ,0),銳角α的終邊與單位圓O交于點P. (Ⅰ)用α的三角函數表示點P的坐標;
(Ⅱ)當 =﹣ 時,求α的值;
(Ⅲ)在x軸上是否存在定點M,使得| |= | |恒成立?若存在,求出點M的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對某班學生一次英語測驗的成績分析,各分數段的分布如圖(分數取整數),由此,估計這次測驗的優(yōu)秀率(不小于80分)為(

A.92%
B.24%
C.56%
D.5.6%

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,點E、F、G分別是棱SA、SB、SC的中點.求證:
(1)平面EFG∥平面ABC;
(2)BC⊥平面SAB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,若Ω是長方體ABCD﹣A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點,F為線段BB1上異于B1的點,且EH∥A1D1 , 則下列結論中不正確的是(
A.EH∥FG
B.四邊形EFGH是矩形
C.Ω是棱柱
D.Ω是棱臺

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正三角形內切圓的半徑是高的 ,把這個結論推廣到正四面體,類似的結論正確的是(
A.正四面體的內切球的半徑是高的
B.正四面體的內切球的半徑是高的
C.正四面體的內切球的半徑是高的
D.正四面體的內切球的半徑是高的

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用計算機隨機產生的有序二元數組(x,y)滿足﹣1≤x≤1,﹣1≤y≤1.
(1)若x,y∈Z,求事件“x2+y2≤1”的概率.
(2)求事件“x2+y2>1”的概率.

查看答案和解析>>

同步練習冊答案