【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若a+c=1,求b的取值范圍.
【答案】
(1)解:由已知得:﹣cos(A+B)+cosAcosB﹣ sinAcosB=0,
即sinAsinB﹣ sinAcosB=0,
∵sinA≠0,∴sinB﹣ cosB=0,即tanB= ,
又B為三角形的內角,
則B=
(2)解:∵a+c=1,即c=1﹣a,cosB= ,
∴由余弦定理得:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac=(a+c)2﹣3ac=1﹣3a(1﹣a)=3(a﹣ )2+ ,
∵0<a<1,∴ ≤b2<1,
則 ≤b<1
【解析】(1)已知等式第一項利用誘導公式化簡,第二項利用單項式乘多項式法則計算,整理后根據sinA不為0求出tanB的值,由B為三角形的內角,利用特殊角的三角函數值即可求出B的度數;(2)由余弦定理列出關系式,變形后將a+c及cosB的值代入表示出b2 , 根據a的范圍,利用二次函數的性質求出b2的范圍,即可求出b的范圍.
科目:高中數學 來源: 題型:
【題目】在某次測驗中,有6位同學的平均成績?yōu)?5分.用xn表示編號為n(n=1,2,…,6)的同學所得成績,且前5位同學的成績如下:
編號n | 1 | 2 | 3 | 4 | 5 |
成績xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同學的成績x6 , 及這6位同學成績的標準差s;
(2)從前5位同學中,隨機地選2位同學,求恰有1位同學成績在區(qū)間(68,75)中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小學為了解本校某年級女生的身高情況,從本校該年級的學生中隨機選出100名女生并統(tǒng)計她們的身高(單位: ),得到下面的頻數分布表:
(1)用分層抽樣的方法從身高在和的女生中共抽取6人,則身高在的女生應抽取幾人?
(2)在(1)中抽取的6人中,再隨機抽取2人,求這2人身高都在內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)設△AOB的外接圓圓心為E.
(1)若⊙E與直線CD相切,求實數a的值;
(2)設點P在圓E上,使△PCD的面積等于12的點P有且只有三個,試問這樣的⊙E是否存在,若存在,求出⊙E的標準方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=x2+ex﹣ (x<0)與g(x)=x2+ln(x+a)圖象上存在關于y軸對稱的點,則a的取值范圍是( )
A.(﹣ )
B.( )
C.( )
D.( )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】f(x)=(ax2+x﹣1)ex
(1)當a<0時,求f(x)的單調區(qū)間;
(2)若a=﹣1,f(x)的圖象與g(x)= x3+ x2+m的圖象有3個不同的交點,求實數m的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD
(1)求證:BD⊥PC;
(2)若平面PBC與平面PAD的交線為l,求證:BC∥l.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知多面體的底面是邊長為2的正方形, 底面, ,且.
(Ⅰ)記線段的中點為,在平面內過點作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面所成角的正弦值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若直線m被兩平行線l1:x+y=0與l2:x+y+ =0所截得的線段的長為2 ,則m的傾斜角可以是
①15° ②45° ③60° ④105°⑤120° ⑥165°
其中正確答案的序號是 . (寫出所有正確答案的序號)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com