【題目】f(x)=(ax2+x﹣1)ex
(1)當a<0時,求f(x)的單調區(qū)間;
(2)若a=﹣1,f(x)的圖象與g(x)= x3+ x2+m的圖象有3個不同的交點,求實數m的范圍.
【答案】
(1)解:∵f'(x)=ex(ax2+x+1+2ax+1)=axex(x+ ),且a<0,
∴當a∈(﹣ ,0)時,f(x)在(﹣∞,0)上是減函數,在(0,﹣ )上是增函數,在(﹣ ,+∞)上是減函數,
當a=﹣ 時,f(x)在(﹣∞,+∞)上單調遞減;
當a∈(﹣∞,﹣ )時,f(x)在(﹣∞,﹣ )上是減函數,在(﹣ ,0)上是增函數,在(0,+∞)上是減函數
(2)解:令h(x)=f(x)﹣g(x)=(﹣x2+x﹣1)ex﹣( x3+ x2+m),
則h′(x)=(﹣2x+1)ex+(﹣x2+x﹣1)ex﹣(x2+x)=﹣(ex+1)(x2+x)
令h′(x)>0得﹣1<x<0,令h′(x)<0得x>0或x<﹣1.
∴h(x)在x=﹣1處取得極小值h(﹣1)=﹣ ﹣ ﹣m,在x=0處取得極大值h(0)=﹣1﹣m,
∵函數f(x),g(x)的圖象有三個交點,即函數h(x)有3個不同的零點,
∴ 即 ,
解得:﹣ ﹣ <m<﹣1
【解析】(1)先求出函數f(x)的導函數f'(x),然后討論a與0的大小關系,在函數的定義域內解不等式f'(x)>0和f'(x)<0,即可求出函數f(x)的單調區(qū)間;(2)令h(x)=f(x)﹣g(x),求出導數,求出單調區(qū)間,和極值,函數f(x),g(x)的圖象有三個交點,即函數h(x)有3個不同的零點,即有h(﹣1)<0,且h(0)>0,解出即可.
【考點精析】本題主要考查了利用導數研究函數的單調性和函數的零點與方程根的關系的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減;二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知圓心為C的圓經過點A(0,2)和B(1,1),且圓心C在直線l:x+y+5=0上.
(1)求圓C的標準方程;
(2)若P(x,y)是圓C上的動點,求3x﹣4y的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數y=2sin(2x+ )的圖象,只需把函數y=2sinx的圖象( )
A.向左平移 個單位長度,再把所得各點的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變)
B.向左平移 個單位長度,再把所得各點的橫坐標變?yōu)樵瓉淼? 倍(縱坐標不變)
C.各點的縱坐標不變、橫坐標變?yōu)樵瓉淼?倍,再把所得圖象向左平移 個單位長度
D.各點的縱坐標不變、橫坐標變?yōu)樵瓉淼? 倍,再把所得圖象向左平移 個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設{an}是等差數列,數列{an}的前n項和為Sn , {bn}是各項都為正數的等比數列,且a1=b1=1,a3+b2=7,S2+b2=6 (Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)求數列{anbn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓: ()的右焦點在直線: 上,且橢圓上任意兩個關于原點對稱的點與橢圓上任意一點的連線的斜率之積為.
(1)求橢圓的方程;
(2)若直線經過點,且與橢圓有兩個交點, ,是否存在直線: (其中)使得, 到的距離, 滿足恒成立?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩定點A(2,5),B(-2,1),M(在第一象限)和N是過原點的直線l上的兩個動點,且|MN|=,l∥AB,如果直線AM和BN的交點C在y軸上,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com