【題目】近日,據(jù)《三秦都市報》消息稱陜西新高考方案初稿已經(jīng)形成,新高考從2019年秋季入學的新高一學生開始執(zhí)行“3+3”模式,即除語文、數(shù)學、外語三科為必考科目外,還要在物理、化學、生物、歷史、地理、政治六科中選擇三科作為選考科目.已知某生的高考志愿定為北京大學環(huán)境科學專業(yè),按照2018年北大高考招生選考科目要求物理、化學必選,為該生安排課表(上午四節(jié)、下午四節(jié),每門課每天至少一節(jié)課),現(xiàn)該生某天最后兩節(jié)為自習課,且數(shù)學不排下午第一節(jié),語文、外語不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則該生該天課表不同的排法有________.

【答案】1776

【解析】

選修有4種,排課按照語文、外語排上午和下等分兩類:第一類兩門都在上午,第二類一門在上午一門在下午,分類求出后乘以4即得.

從生物、歷史、地理、政治各任選1科,有4種選法,然后分兩類:

(1)語文、外語排上午,從中任選一個排,有;

(2)語文、外語一門排上午,一門排下午:有

共有種.

故答案為:1776.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為為參數(shù),圓C的標準方程為以坐標原點為極點,x軸正半軸為極軸建立極坐標系.

求直線l和圓C的極坐標方程;

若射線l的交點為M,與圓C的交點為A,B,且點M恰好為線段AB的中點,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016520日以來,廣東自西北到東南出現(xiàn)了一次明顯降雨.為了對某地的降雨情況進行統(tǒng)計,氣象部門對當?shù)?/span>20~289天內記錄了其中100小時的降雨情況,得到每小時降雨情況的頻率分布直方圖如下:

若根據(jù)往年防汛經(jīng)驗,每小時降雨量在時,要保持二級警戒,每小時降雨量在時,要保持一級警戒.

1)若以每組的中點代表該組數(shù)據(jù)值,求這100小時內每小時的平均降雨量;

2)若從記錄的這100小時中按照警戒級別采用分層抽樣的方法抽取10小時進行深度分析.再從這10小時中隨機抽取3小時,求抽取的這3小時中屬于一級警戒時間的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019924日國家統(tǒng)計局在慶祝中華人民共和國成立70周年活動新聞中心舉辦新聞發(fā)布會指出,1952年~2018年,我國GDP679.1億元躍升至90.03萬億元,實際增長174倍;人均GDP119元提高到6.46萬元,實際增長70.全國各族人民,砥礪奮進,頑強拼搏,實現(xiàn)了經(jīng)濟社會的跨越式發(fā)展.如圖是全國2010年至2018GDP總量(萬億元)的折線圖.注:年份代碼19分別對應年份20102018.

1)由折線圖看出,可用線性回歸模型擬合與年份代碼的關系,請用相關系數(shù)加以說明;

2)建立關于的回歸方程(系數(shù)精確到0.01),并預測2021年全國GDP的總量.

附注:參考數(shù)據(jù):.

參考公式:相關系數(shù)

回歸方程中斜率和截距的最小二乘法估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為

1)求圓的圓心到直線的距離;

2)己知,若直線與圓交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:其中所有假命題的序號是_______.

①命題,的否定是,;

②將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像;

③冪函數(shù)上是減函數(shù),則實數(shù);

④函數(shù)有兩個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若在定義域內單調遞增,求實數(shù)a的取值范圍;

2)若有兩個不同的極值點,記過點的直線的斜率為k,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

中,內角對邊的邊長分別是,已知,

的面積等于,求;

,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠打算設計一種容積為2m3的密閉容器用于貯藏原料,容器的形狀是如圖所示的直四棱柱,其底面是邊長為x米的正方形,假設該容器的底面及側壁的厚度均可忽略不計.

1)請你確定x的值,使得該容器的外表面積最小;

2)若該容器全部由某種每平方米價格為100元的材料做成,且制作該容器僅需將購置的材料做成符合需要的矩形,這些矩形即是直四棱柱形容器的上下底面和側面(假設這一過程中產(chǎn)生的費用和材料損耗可忽略不計),再將這些上下底面和側面的邊緣進行焊接即可做成該容器,焊接費用是每米500元,試確定x的值,使得生產(chǎn)每個該種容器的成本(即原料購置成本+焊接費用)最低.

查看答案和解析>>

同步練習冊答案