【題目】如圖,在三棱柱中,平面ABC,,,E是BC的中點(diǎn).
求證:;
求異面直線AE與所成的角的大;
若G為中點(diǎn),求二面角的正切值.
【答案】(1)見解析;(2);(3)
【解析】
分析:(1)由BB1⊥面ABC及線面垂直的性質(zhì)可得AE⊥BB1,由AC=AB,E是BC的中點(diǎn),及等腰三角形三線合一,可得AE⊥BC,結(jié)合線面垂直的判定定理可證得AE⊥面BB1C1C,進(jìn)而由線面垂直的性質(zhì)得到AE⊥B1C;(2)取B1C1的中點(diǎn)E1,連A1E1,E1C,根據(jù)異面直線夾角定義可得,∠E1A1C是異面直線A與A1C所成的角,設(shè)AC=AB=AA1=2,解三角形E1A1C可得答案;(3)連接AG,設(shè)P是AC的中點(diǎn),過點(diǎn)P作PQ⊥AG于Q,連EP,EQ,則EP⊥AC,由直三棱錐的側(cè)面與底面垂直,結(jié)合面面垂直的性質(zhì)定理,可得EP⊥平面ACC1A1,進(jìn)而由二面角的定義可得∠PQE是二面角C﹣AG﹣E的平面角.
詳解:
證明:因?yàn)?/span>面ABC,面ABC,所以
由,E為BC的中點(diǎn)得到
面
,
解:取的中點(diǎn),連,,
則,
是異面直線AE與所成的角
設(shè),則由,
可得,,
,
在中,
所以異面直線AE與所成的角為
連接AG,設(shè)P是AC的中點(diǎn),過點(diǎn)P作于Q,連EP,EQ,則
又平面平面
平面
而.
是二面角的平面角
由,,,得
所以二面角的平面角正切值是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為矩形,平面, // ,, ,點(diǎn)點(diǎn)P在棱上.
(1)求證: ;
(2)若是的中點(diǎn),求異面直線與所成角的余弦值;
(3)是否存在正實(shí)數(shù),使得,且滿足二面角的余弦值為,若存在,求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)四年級(jí)男同學(xué)有45名,女同學(xué)有30名,老師按照分層抽樣的方法組建了一個(gè)5人的課外興趣小組.
(Ⅰ)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(Ⅱ)經(jīng)過一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長(zhǎng)為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(diǎn).
(1)求直線C與平面ABCD所成角的正弦的值;
(2)求證:平面A B1D1∥平面EFG;
(3)求證:平面AA1C⊥面EFG .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
若,解不等式;
若不等式對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍;
若,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超過x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為F,過橢圓C中心的弦PQ長(zhǎng)為2,且∠PFQ=90°,△PQF的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A1、A2分別為橢圓C的左、右頂點(diǎn),S為直線 上一動(dòng)點(diǎn),直線A1S交橢圓C于點(diǎn)M,直線A2S交橢圓于點(diǎn)N,設(shè)S1、S2分別為△A1SA2、△MSN的面積,求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射手平時(shí)射擊成績(jī)統(tǒng)計(jì)如表:
環(huán)數(shù) | 7環(huán)以下 | 7 | 8 | 9 | 10 |
概率 | a | b |
已知他射中7環(huán)及7環(huán)以下的概率為.
求a和b的值;
求命中10環(huán)或9環(huán)的概率;
求命中環(huán)數(shù)不足9環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)滿足2x2f(x)+x3f′(x)=ex , f(2)= ,則x∈[2,+∞)時(shí),f(x)( )
A.有最大值
B.有最小值
C.有最大值
D.有最小值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com