【題目】如圖,在棱長為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點.
(1)求直線C與平面ABCD所成角的正弦的值;
(2)求證:平面A B1D1∥平面EFG;
(3)求證:平面AA1C⊥面EFG .
【答案】(1) ;(2)見解析;(3)見解析。
【解析】試題分析:(1)因為平面ABCD,所以為與平面ABCD所成角,
然后解三角形求出此角即可.
(2)證明面面平行根據(jù)判定定理只須證明平面平面A B1D1內兩條相交直線和分別平行于平面EFG即可.在證明線面平行時又轉化為證明線線平行.
(3)易證:BD平面AA1C,再證明EF//BD,因而可證出平面AA1C⊥面EFG.
(1)∵平面ABCD=C,在正方體ABCD-A1B1C1D1
平面ABCD
∴AC為在平面ABCD的射影
∴為與平面ABCD所成角……….2分
正方體的棱長為
∴AC=,=
………..4分
(2)在正方體ABCD-A1B1C1D1
連接BD,∥,=
為平行四邊形
∴∥∵E,F分別為BC,CD的中點
∴EF∥BD∴EF∥…………3分
∵EF平面GEF,平面GEF
∴∥平面GEF …………7分
同理∥平面GEF∵=
∴平面A B1D1∥平面EFG ……………9分
(3)在正方體ABCD-A1B1C1D1∴平面ABCD
∵EF平面ABCD
∴EF …………10分
∵ABCD為正方形
∴ACBD
∵EF∥BD
∴ACEF ………..11分
∴EF平面AA1C
∵EF平面EFG
∴平面AA1C⊥面EFG …………….12分.
科目:高中數(shù)學 來源: 題型:
【題目】為調查高中生的數(shù)學成績與學生自主學習時間之間的相關關系,某重點高中數(shù)學教師對新入學的45名學生進行了跟蹤調查,其中每周自主做數(shù)學題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學平均成績不足120分的占 ,統(tǒng)計成績后,得到如下的2×2列聯(lián)表:
分數(shù)大于等于120分 | 分數(shù)不足120分 | 合計 | |
周做題時間不少于15小時 | 4 | 19 | |
周做題時間不足15小時 | |||
合計 | 45 |
(Ⅰ)請完成上面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“高中生的數(shù)學成績與學生自主學習時間有關”;
(Ⅱ)( i)按照分層抽樣的方法,在上述樣本中,從分數(shù)大于等于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到的不足120分且周做題時間不足15小時的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
( ii)若將頻率視為概率,從全校大于等于120分的學生中隨機抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設P是圓上的動點,點D是P在x軸上的投影,M為線段PD上一點,且,
(1)當P在圓上運動時,求點M的軌跡C的方程;
(2)求過點(3,0)且斜率為的直線被軌跡C所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的漸近線方程為,左焦點為F,過的直線為,原點到直線的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點C,D,問是否存在實數(shù),使得以CD為直徑的圓經過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的空間幾何體中,四邊形是邊長為2的正方形, 平面, , , , .
(1)求證:平面平面;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值.
(1)直線l1過點(-3,-1),并且直線l1與l2垂直;
(2)直線l1與直線l2平行,并且坐標原點到l1,l2的距離相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com