【題目】設(shè)分別為雙曲線的左、右頂點(diǎn),雙曲線的實(shí)軸長(zhǎng)為,焦點(diǎn)到漸近線的距離為.
(1)求雙曲線的方程;
(2)已知直線與雙曲線的右支交于兩點(diǎn),且在雙曲線的右支上存在點(diǎn),使,求的值及點(diǎn)的坐標(biāo).
【答案】(1);(2), .
【解析】試題分析:(1)由于實(shí)軸長(zhǎng)為,可得,由雙曲線的焦點(diǎn)到漸進(jìn)線的距離可得,從而得其方程;(2)設(shè),根據(jù)向量關(guān)系可得,聯(lián)立直線方程與雙曲線方程消去得關(guān)于的一元二次方程,由韋達(dá)定理可得,代入直線方程可得,從而得,再根據(jù)點(diǎn)在雙曲線上,滿足雙曲線方程,解方程組即可得到點(diǎn)的坐標(biāo)和的值.
試題解析:(1)由實(shí)軸長(zhǎng)為,得,漸近線方程為,即, 焦點(diǎn)到漸近線的距離為, ,又, 雙曲線方程為: .
(2)設(shè),則,
由,
,,解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 3 | 0 |
(1)請(qǐng)將上表空格中的數(shù)據(jù)在答卷的相應(yīng)位置上,并求函數(shù)f(x)的解析式;
(2)若y=f(x)的圖象上所有點(diǎn)向左平移 個(gè)單位后對(duì)應(yīng)的函數(shù)為g(x),求當(dāng)x∈[﹣ , ]時(shí),函數(shù)y=g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率,過點(diǎn)和的直線與原點(diǎn)的距離為.
(1)求橢圓的方程.
(2)已知定點(diǎn),若直線與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面底面,,,,,為的中點(diǎn),側(cè)棱.
(1)求證:平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價(jià)格y和房屋的面積x的數(shù)據(jù)
房屋面積(平方米) | 115 | 110 | 80 | 135 | 105 |
銷售價(jià)格(萬元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出散點(diǎn)圖
(2)求線性回歸方程
(3)根據(jù)(2)的結(jié)果估計(jì)房屋面積為150平方米時(shí)的銷售價(jià)格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,橢圓E的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且在拋物線的準(zhǔn)線上,點(diǎn)是橢圓E上的一個(gè)動(dòng)點(diǎn), 面積的最大值為.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過焦點(diǎn)作兩條平行直線分別交橢圓E于四個(gè)點(diǎn).
①試判斷四邊形能否是菱形,并說明理由;
②求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合,且兩個(gè)坐標(biāo)系的單位長(zhǎng)度相同.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為.
(Ⅰ)若直線l的斜率為-1,求直線l與曲線C交點(diǎn)的極坐標(biāo);
(Ⅱ)若直線l與曲線C相交弦長(zhǎng)為,求直線l的參數(shù)方程(標(biāo)準(zhǔn)形式).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天氣預(yù)報(bào)是氣象專家根據(jù)預(yù)測(cè)的氣象資料和專家們的實(shí)際經(jīng)驗(yàn),經(jīng)過分析推斷得到的,在現(xiàn)實(shí)的生產(chǎn)生活中有著重要的意義.某快餐企業(yè)的營銷部門經(jīng)過對(duì)數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營情況與降雨天數(shù)和降雨量的大小有關(guān).
(Ⅰ)天氣預(yù)報(bào)說,在今后的四天中,每一天降雨的概率均為,求四天中至少有兩天降雨的概率;
(Ⅱ)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小(單位:毫米)與其出售的快餐份數(shù)成線性相關(guān)關(guān)系,該營銷部門統(tǒng)計(jì)了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:
降雨量(毫米) | 1 | 2 | 3 | 4 | 5 |
快餐數(shù)(份) | 50 | 85 | 115 | 140 | 160 |
試建立關(guān)于的回歸方程,為盡量滿足顧客要求又不造成過多浪費(fèi),預(yù)測(cè)降雨量為6毫米時(shí)需要準(zhǔn)備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))
附注:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府為了對(duì)房地產(chǎn)市場(chǎng)進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門對(duì)外來人口和當(dāng)?shù)厝丝谶M(jìn)行了買房的心理預(yù)期調(diào)研,用簡(jiǎn)單隨機(jī)抽樣的方法抽取了110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表(不全):
已知樣本中外來人口數(shù)與當(dāng)?shù)厝丝跀?shù)之比為3:8.
(1)補(bǔ)全上述列聯(lián)表;
(2)從參與調(diào)研的外來人口中用分層抽樣方法抽取6人,進(jìn)一步統(tǒng)計(jì)外來人口的某項(xiàng)收入指標(biāo),若一個(gè)買房人的指標(biāo)記為3,一個(gè)猶豫人的指標(biāo)記為2,一個(gè)不買房人的指標(biāo)記為1,現(xiàn)在從這6人中再隨機(jī)選取3人,求選取的3人的指標(biāo)之和大于5的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com