【題目】(2015·上海)如圖,圓錐的頂點(diǎn)為P,底面的一條直徑為AB,C為半圓弧AB的中點(diǎn),E為劣弧CB的中點(diǎn). 已知PO=2,OA=1,求三棱錐P-AOC的體積,并求異面直線PA與OE所成角的大小.

【答案】arccos
【解析】因?yàn)镻O=2, OA=1, 所以三棱錐P-AOC的體積V=S△AOC·OP=xx1x1x2=, 因?yàn)镺E∥AC, 所以異面直線PA與OE所成的角就是PA與AC的夾角, 在△ACP中, AC=, AP=CP=, 過(guò)P做PH⊥AC, 則AH=, 在Rt△AHP中, cos∠PAH==, 所以異面直線PA與OE所成角的大小arccos。
【考點(diǎn)精析】掌握旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))和異面直線及其所成的角是解答本題的根本,需要知道常見(jiàn)的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺(tái)、球;異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年五一小長(zhǎng)假,以洪崖洞、李子壩輕軌、長(zhǎng)江索道、一棵樹(shù)觀景臺(tái)為代表的網(wǎng)紅景點(diǎn),把重慶推上全國(guó)旅游人氣搒的新高.外地客人小胖準(zhǔn)備游覽上面這個(gè)景點(diǎn),他游覽每一個(gè)景臺(tái)的概率都是,且他是否游覽哪個(gè)景點(diǎn)互不影響.設(shè)表示小胖離開(kāi)重慶時(shí)游覽的景點(diǎn)數(shù)與沒(méi)有游覽的景點(diǎn)數(shù)之差的絕對(duì)值.

(1)記“函數(shù)是實(shí)數(shù)集上的偶函數(shù)”為事件,求事件的概率.

(2)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=logmm0m≠1),

I)判斷fx)的奇偶性并證明;

II)若m=,判斷fx)在(3,+∞)的單調(diào)性(不用證明);

III)若0m1,是否存在βα>0,使fx)在β]的值域?yàn)?/span>[logmmβ-1),logmα-1]?若存在,求出此時(shí)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系xOy中,曲線C.直線l經(jīng)過(guò)點(diǎn)Pm0),且傾斜角為O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.

)寫(xiě)出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于A,B兩點(diǎn),且|PA·PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C,直線為參數(shù))

(1)寫(xiě)出曲線C的參數(shù)方程和直線l的普通方程;

(2)過(guò)曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對(duì)此空間圖形解答下列問(wèn)題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長(zhǎng);
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋時(shí)期的著名數(shù)學(xué)家秦九韶在他的著作《數(shù)學(xué)九章》中提出了秦九韶算法來(lái)計(jì)算多項(xiàng)式的值,在執(zhí)行如圖算法的程序框圖時(shí),若輸入的n=5,x=2,則輸出V的值為(
A.15
B.31
C.63
D.127

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.

(1)求的通項(xiàng)公式;

(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=x3﹣3x+2+m(m>0),在區(qū)間[0,2]上存在三個(gè)不同的實(shí)數(shù)a,b,c,使得以f(a),f(b),f(c)為邊長(zhǎng)的三角形是直角三角形,則m的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案