【題目】如圖,三個(gè)校區(qū)分別位于扇形OAB的三個(gè)頂點(diǎn)上,點(diǎn)Q是弧AB的中點(diǎn),現(xiàn)欲在線段OQ上找一處開(kāi)挖工作坑P(不與點(diǎn)O,Q重合),為小區(qū)鋪設(shè)三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長(zhǎng)度為y千米.

(1)將y表示成θ的函數(shù),并寫(xiě)出θ的范圍;

(2)請(qǐng)確定工作坑P的位置,使地下電纜管線的總長(zhǎng)度最。

【答案】(1)(2)P與O的距離為時(shí),地下電纜管線的總長(zhǎng)度最小

【解析】

1)首先根據(jù)Q為弧AB的中點(diǎn),得到知PA=PB,∠AOP=∠BOP=,利用正弦定理得到,根據(jù)OA=2,得到PA=,OP=從而得到y(tǒng)=PA+PB+OP=2PA+OP=,根據(jù)題意確定出;

2)對(duì)函數(shù)求導(dǎo),令導(dǎo)數(shù)等于零,求得,確定出函數(shù)的單調(diào)區(qū)間,從而求得函數(shù)的最值.

(1)因?yàn)镼為弧AB的中點(diǎn),由對(duì)稱性,知PA=PB,∠AOP=∠BOP=,

又∠APO=,∠OAP=,

由正弦定理,得:,又OA=2,

所以,PA=,OP=,

所以,y=PA+PB+OP=2PA+OP=

∠APQ>∠AOP,所以,,∠OAQ=∠OQA=

所以,;

(2)令,

,得:,

上遞減,在上遞增

所以,當(dāng),即OP=時(shí),有唯一的極小值,

即是最小值:=2,

答:當(dāng)工作坑P與O的距離為時(shí),地下電纜管線的總長(zhǎng)度最。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)若,且對(duì)任意,恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)令,當(dāng)時(shí),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,證明恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某公園內(nèi)有一塊矩形綠地區(qū)域ABCD,已知AB=100米,BC=80米,以AD,BC為直徑的兩個(gè)半圓內(nèi)種植花草,其它區(qū)域種值苗木. 現(xiàn)決定在綠地區(qū)域內(nèi)修建由直路BN,MN和弧形路MD三部分組成的觀賞道路,其中直路MN與綠地區(qū)域邊界AB平行,直路為水泥路面,其工程造價(jià)為每米2a元,弧形路為鵝卵石路面,其工程造價(jià)為每米3a元,修建的總造價(jià)為W元. 設(shè).

(1)求W關(guān)于的函數(shù)關(guān)系式;

(2)如何修建道路,可使修建的總造價(jià)最少?并求最少總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某登山隊(duì)在山腳處測(cè)得山頂的仰角為,沿傾斜角為(其中)的斜坡前進(jìn)后到達(dá)處,休息后繼續(xù)行駛到達(dá)山頂

1)求山的高度;

2)現(xiàn)山頂處有一塔.從的登山途中,隊(duì)員在點(diǎn)處測(cè)得塔的視角為.若點(diǎn)處高度,則為何值時(shí),視角最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開(kāi)展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說(shuō)明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過(guò)和不超過(guò)的工人數(shù)填入下面的列聯(lián)表:

超過(guò)

不超過(guò)

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)現(xiàn)有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結(jié)合某貧困村水質(zhì)優(yōu)良的特點(diǎn),決定利用扶貧資金從外地購(gòu)買甲、乙、丙三種魚(yú)苗在魚(yú)塘中進(jìn)行養(yǎng)殖試驗(yàn),試驗(yàn)后選擇其中一種進(jìn)行大面積養(yǎng)殖,已知魚(yú)苗甲的自然成活率為0.8.魚(yú)苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚(yú)苗是否成活相互獨(dú)立.

1)試驗(yàn)時(shí)從甲、乙,丙三種魚(yú)苗中各取一尾,記自然成活的尾數(shù)為,求的分布列和數(shù)學(xué)期望;

2)試驗(yàn)后發(fā)現(xiàn)乙種魚(yú)苗較好,扶貧工作組決定購(gòu)買尾乙種魚(yú)苗進(jìn)行大面積養(yǎng)殖,為提高魚(yú)苗的成活率,工作組采取增氧措施,該措施實(shí)施對(duì)能夠自然成活的魚(yú)苗不產(chǎn)生影響.使不能自然成活的魚(yú)苗的成活率提高了50%.若每尾乙種魚(yú)苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標(biāo)是獲利不低于37.6萬(wàn)元,問(wèn)需至少購(gòu)買多少尾乙種魚(yú)苗?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若存在正常數(shù),使得對(duì)任意的,都有成立,我們稱函數(shù)同比不減函數(shù)

1)求證:對(duì)任意正常數(shù),都不是同比不減函數(shù);

2)若函數(shù)同比不減函數(shù),求的取值范圍;

3)是否存在正常數(shù),使得函數(shù)同比不減函數(shù),若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案